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Preface

The aim of this book is to give a self-contained account of the statistical
basis of epidemiology. The book is intended primarily for students enrolled
for a masters degree in epidemiology, clinical epidemiology, or biostatistics,
and should be suitable both as the basis for a taught course and for private
study. '

Although we anticipate that most readers will have taken a first course
in statistics, no previous knowledge is assumed, and the mathematical level
of the book has been chosen to suit readers whose basic training is in biol-
ogy. Some of the material in the book could be omitted at first reading, ei-
ther because it is rather more demanding of mathematical skills or because
it deals with rather specialized points. We have been careful to gather such
material either into complete chapters or complete sections and to indicate
these with a marginal symbol, as here.

Epidemiologists today have ready access to computer programs of great
generality, but to use these sensibly and productively it is necessary to
understand the ideas which lie behind them. The most important of these
is the idea of a probability model. All statistical analysis of data is based
on probability models, even though the models may not be explicit. Only
by fully understanding the model can one fully understand the analysis.

Models depend on parameters, and values must be chosen for these
parameters in order to match the model to the data. In showing how this
is done we have chosen to emphasize the role of likelihood because this offers
an approach to statistics which is both simple and intuitively satisfying.
An additional advantage of this approach is that it requires the model and
its parameters to be made explicit, even in the simplest situations. More
complex problems can then be tackled by natural extensions of simple
methods and do not require a whole new way of looking at things.

Most of the material in this book was developed during successive res-
idential summer courses.in epidemiology and statistics, held in Florence
under the auspices of the European Educational Programme in Epidemiol-
ogy. We are grateful to the International Agency for Cancer Research, the
Regional Office for Europe of the World Health Organization, the Commis-
sion of the European Communities, and the Tuscany Regional Government,
for sponsoring the program, and to Walter Davies, Organizing Secretary,
and Rodolfo Saracci, Course Director, whose respective skills ensured that
the course took place each year. We also acknowledge with thanks helpful
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comments on earlier drafts from Damien Jolley, Bendix Carstensen, Dave
Leon, and Nick Hills.

David Clayton

Cambridge
& g Michael Hills

London
February 1993

Dedication

To the students of the Florence course, 1988 — 92, without whose help and
encouragement this book would never have appeared.
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1
Probability models

1.1 Observation, experiments and models

Science proceeds by endless repetition of a three-stage process,

1. observation;

2. building a model to describe (or ‘explain’) the observations; and

3. using the model to predict future observations. If future observations
are not in accord with the predictions, the model must be replaced
or refined.

In quantitative science, the models used are mathematical models. They
fall into two main groups, deterministic models and probability (or stochas-
tic) models. It is the latter which are appropriate in epidemiology, but the
former are more familiar to most scientists and serve to introduce some
important ideas.

DETERMINISTIC MODELS

The most familiar examples of deterministic models are the laws of classical
physics. We choose as a familiar example Ohm’s law, which applies to the
relationship between electrical potential (or voltage), V', applied across a
conductor and the current flowing, I. The law holds that there is a strict
proportionality between the two — if the potential is doubled then the
current will double. This relationship is represented graphically in Fig. 1.1.

Ohm’s law holds for a wide range of conductors, and simply states that
the line in Fig. 1.1 is straight; it says nothing about the gradient of the
line. This will differ from one conductor to another and depends on the
resistance of the conductor. Without knowing the resistance it will not be
possible to predict the current which will flow in any particuler conductor.
Physicists normally denote the resistance by R and write the relationship
as

However, R is a different sort of quantity from V or I. It is a parameter —
a number which we must fix in order to apply the general law to a specific
case. Statisticians are careful to differentiate between observable variables
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14
Fig. 1.1. A deterministic model: Ohm’s law.

(such as V' and I) and parameters (such as R) and use Greek letters for
the latter. Thus, if Ohm were a modern statistician he would write his law
as

I=—

p

In this form it is now clear that p, the resistance, is a parameter of a simple
mathematical model which relates current to potential. Alternatively, he
could write the law as

I =~V

where 7 is the conductance (the inverse of the resistance). This is a simple
example of a process called reparametrization — writing the model differ-
ently so that the parameters take on different meanings.

STOCHASTIC MODELS

Unfortunately the phenomena studied by scientists are rarely as predictable
as is implied by Fig. 1.1. In the presence of measurement errors and un-
controlled variability of experimental conditions it might be that real data
look more like Fig. 1.2. In these circumstances we would not be in a po-
sition to predict a future observation with certainty, nor would we be able
to give a definitive estimate of the resistance parameter. It is necessary
to extend the deterministic model so that we can predict a range of more
probable future observations, and indicate the uncertainty in the estimate
of the resistance.

Problems such as this prompted the mathematician Gauss to develop
his theory of errors, based on the Gaussian distribution (often also called
the Normal distribution), which is the most important probability model
for these problems. A very large part of statistical theory is concerned with
this model and most elementary statistical texts reflect this. Epidemiology,

BINARY DATA 5

v
Fig. 1.2. Experimental/observational errors.

however, is more concerned with the occurrence (or not) of certain events in
the natural history of disease. Since these occurrences cannot be described
purely deterministically, probability models are also necessary here, but
it is the models of Bernoulli and Poisson which are more relevant. The
remainder of this chapter discusses a particularly important type of data
generated by epidemiological studies, and the nature of the models we use
in its analysis.

1.2 Binary data

Many epidemiological studies generate data in which the response mea-
surement for each subject may -take one of only two possible values. Such
a response is called a binary response. Two rather different types of study
generate such data.

COHORT STUDIES WITH FIXED FOLLOW-UP TIME

In a cohort study a group of people are followed through some period of
time in order to study the occurrence (or not) of a certain event of interest.
The simplest case is a study of mortality (from any cause). Clearly, there
are only two possible outcomes for a subject followed, say, for five years —
death or survival. »

More usually, it is only death from a specified cause or causes which
is of interest. Although there are now three possible outcomes for any
subject — death from the cause of interest, death from another cause, or
survival — such data are usually dealt with as binary data. The response is
taken as death from cause of interest as against survival, death from other
causes being treated as premature termination of follow-up. Premature
termination of follow-up is a common feature of epidemiological and clinical
follow-up studies and may occur for many reasons. It is called censoring, a
word which reflects the fact that it is the underlying binary response which
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we would have liked to observe, were it not for the removal of the subject
from observation. _

In incidence studies the event of interest is new occurrence of a spec-
ified disease. Again our interest is in the binary response (whether the
disease occurred or not) although other events may intervene to censor our
observation of it.

For greater generality, we shall use the word failure as a generic term
for the event of interest, whether incidence, mortality, or some other (unde-
sirable) outcome. We shall refer to non-failure as survival. In the simplest
case, we study N subjects, each one being followed for a fixed time in-
terval, such as five years. Over this time we observe D failures, so that
N — D survive. We shall develop methods for dealing with censoring in
later chapters.

CROSS-SECTIONAL PREVALENCE DATA

Prevalence studies have considerable importance in assessing needs for
health services, and may also provide indirect evidence for differences in-in-
cidence. They have the considerable merit of being relatively cheap to carry
out since there is no follow-up of the study group over time. Subjects are
simply categorized as affected or not affected, according to agreed clinical
criteria, at some fixed point in time. In a simple study, we might observe
N subjects and classify D of them as affected. An important example is
serological studies in infectious-disease epidemiology, in which subjects are
classified as being seropositive or seronegative for a specified infection.

1.3 The binary probability model

The obvious analysis of our simple binary data consisting of D failures
out of N subjects observed is to compute the proportion failing, D/N.

However, knowing the proportion of a cohort which develops a disease, or .

dies from a given cause, is of little use unless it can be assumed to have a
wider applicability beyond the cohort. It is in making this passage from
the particular to the general that statistical models come in. One way
of looking at the problem is as an attempt to predict the outcome for a
new subject, similar to the subjects in the cohort, but whose outcome is
unknown. - Since the outcome for this new subject cannot be predicted
with certainty the prediction must take the form of probabilities attached
to the two possible outcomes. This is the binary probability model It
is the simplest of all probability models and, for the present, we need
to know nothing of the properties of probability save that probabilities
are numbers lying in the range 0 to 1, with 0 representing an impossible
outcome and 1 representing a certain outcome, and that the probability
of occurrence of either one of two distinct outcomes is the sum of their
individual probabilities (the additive rule of probability).

THE BINARY PROBABILITY MODEL 7

F (Failure)

S (Survival)

_Fig. 1.8. The binary probability model.

THE RISK PARAMETER

The'binary probability model is illustrated in Figure 1.3. The two outcomes
are labelled F (failure) and S (survival). The model has one parameter, 7,
the probability of failure. Because the subject must either fail or survive,
the sum of the probabilities of these two outcomes must be 1, so the proba-
bility of survival is 1 — 7. In the context where 7 represents the probability
of occurrence of an event in a specified time period, it is usually called the
risk.

THE ODDS PARAMETER

An important alternative way of parametrizing the binary probability model
is in terms of the odds of failure versus survival. These are

m:(l—n),

which may also be written as

1—-m

It is convenient to omit the : 1 in the above expression and to measure the

odds by the fraction
T

1—7m"

This explains why, although the word odds is plural, there is often only
one number which measures the odds.

Exercise 1.1. Calculate the odds of F to S when the probability of failure is (a)
0.75, (b) 0.50, () 0.25.

In general the relationship between a probability = and the corresponding
odds Q is

gt
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This can be inverted to give

= L 1 =
Tire T T T ire

Exercise 1.2. Calculate the probability of failure when Q, the odds of F to S is
(a) 0.3, (b) 3.0.

RARE EVENTS

In this book we shall be particularly concerned with rare events, that is,
events with a small probability, =, of occurrence in the time period of
interest. In this case (1 — ) is very close to 1 and the odds parameter and
the risk parameter are nearly equal:

Q=T

This approximation is often called the rare disease assumption, but this is
a misleading term, since even the common cold has a small probability of
occurrence within, say, a one-week time interval.

1.4 Parameter estimation

Without giving a value to the parameter 7, this model is of no use for
prediction. Our next problem is to use our observed data to estimate its
value. It might seem obvious to the reader that we should estimate 7 by
the proportion of failures, D/N. This corresponds to estimating the odds
parameter {2 by D/(N — D), the ratio of failures to survivors.

It might also seem obvious that we should place more reliance on our
estimate (and upon any predictions bw.sed on it) if N is 1000 than if N is
10. The formal statistical theory which provides a quantitative justification
for these intuitions will be discussed in later chapters.

1.5 1Is the model true?

A model which states that every one of a group of patients has the same
probability of surviving five years will seem implausible to most clinicians.
Indeed, the use of such models by statisticians is a major reason why some
practitioners, brought up to think of each patient as unique, part company
with the subject!

The question of whether scientific models are true is not however, a
sensible one. Instead, we should ask ourselves whether our model is useful
in describing past observations and predicting future ones. Where there re-
mains a choice of models, we must be guided by the criterion of simplicity.
In epidemiology probability models are used to describe past observations
of disease events in study cohorts and to make predictions for future indi-
viduals. If we have no further data which allows us to differentiate subjects

SOLUTIONS 9

in the cohort from one another or from a future individual, we have no op-
tion save to assign the same probability of failure to each subject. Further
data allows elaboration of the model. For example, if we can identify sub-
jects as exposed or unexposed to some environmental influence, the model
can be extended to assign different probabilities to exposed and unexposed
subjects. If additionally we know the level of exposure we can extend the
model by letting the probability of failure be some increasing function of
exposure.

In this book we shall demonstrate the manner in which more compli-
cated models may be developed to deal with more detailed data. The
binary model has been.our starting point since it is the basic building brick
from which more elaborate models are constructed.

Solutions to the exercises

1.1 (a) Odds = 0.75/0.25 = 3.
(b) Odds = 0.50/0.50 = 1.
(c) Odds = 0.25/0.75 = 0.3333.

1.2 (a) Probability = 0.3/1.3 = 0.2308.
(b) Probability = 3/4 = 0.75.
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Conditional probability models

In this chapter we introduce the idea of conditional probability, which allows
us to extend the binary model so that the probability of failure can depend
on earlier events. The natural way of thinking about conditional proba-
bilities is in terms of a tree diagram. These diagrams are used extensively
throughout the book.

2.1 Conditional probability

Suppose a bifiary probability model ‘assigns a probability to a subject’s
death during some future time period. It may be that this prediction would
be better if we knew the subject’s smoking habits. This would be the case
if the probability of death for a smoker were 0.015 but only 0.005 for a
" non-smoker. These probabilities are called conditional probabilities; they
are the probabilities of death conditional on being a smoker and a non-
smoker respectively. Epidemiology is mainly concerned with conditional
probability models that relate occurrence of some disease event, which we
call failure, to events which precede it. These include potential causes,
which we call exposures.

When subjects are classified as either exposed (E+) or not exposed
(E-), the conditional probability model can be represented as a tree with
6 branches. The first two branches refer to E+ and E—; then there are two
referring to failure and survival if the subject is exposed, and two referring
to failure and survival if the subject is not exposed. An example is shown in
Fig. 2.1. The tips of the tree correspond to the four possible combinations
of exposure and outcome for any subject.

The probabilities on the first two branches of the tree refer to the prob-
ability that a subject is exposed and the probability that a subject is not
exposed. Using the smoking example we have taken these to be 0.4 and
0.6. The probabilities in the next two pairs of branches are conditional
probabilities. These are 0.015 (F) and 0.985 (S) if a subject is exposed
(smokes), and 0.005 (F') and 0.995 (S) if a subject is not exposed (does not
smoke).

The probability of any combmatlon of exposure and outcome is ob-
tained by multiplying the probabilities along the branches leading to the

CONDITIONAL PROBABILITY 11

Probability
0.006

0.003

0.995 S

Fig. 2.1. A conditional probability tree.

tip which corresponds to that combination. For example, the probability
that a subject is exposed and fails is

0.4 x 0.015 = 0.006,
and the probability that a subject is not exposed and fails is
0.6 x 0.005 = 0.003.

This is called the multiplicative rule.

Exercise 2.1. Calculate the probabilities for each of the remaining 2 possibilities.
What is the overall probability of failure regardless of exposure?

This overall probability is usually called the marginal probability of failure.

STATISTICAL DEPENDENCE AND INDEPENDENCE

Fig. 2.1 illustrates a model in which the probability of failure differs accord-
ing to whether an individual was exposed or not. In this case, exposure and
failure are said to be statistically dependent. If the probability of failure is
the same, whether or not the subject is exposed, then exposure and failure
are said to be statistically independent.
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Probability
E+ 0.006
F
E- 0.003
E+
S
E—

Fig. 2.2. Predicting exposure from the outcome.

2.2 Changing the conditioning: Bayes’ rule

The additive and multiplicative rules are the basic building blocks of prob-
ability models. A simple application of these rules allows us to change the
direction of prediction so that, for example, a model for the probability of
failure given exposure can be transformed into a model for the probability
of exposure given failure. : '

We shall demonstrate this by using the tree in Fig. 2.1, where the first
level of branching refers to exposure and the second to outcome. This is
turned round in Fig. 2.2, so that the first level of branching now refers
to outcome and the second to exposure. The probabilities of the different
combinations of exposure and outcome are the same whichever way the
tree is written; our problem is to fill in the probabilities on the branches of
this new tree.

Working backwards from the tips of the tree, the probability of failure
regardless of exposure is 0.006 + 0.003 = 0.009. This is the probability
for the first branch of the tree to F. Since the probability corresponding
to any tip of the tree is obtained by multiplying the probabilities in the
branches that lead to the tip, it follows that the probability in the branch
from F to E+, for example, is 0.006/0.009 = 0:667. This is‘the conditional
probability of being exposed given the outcome was failure. This process of
reversing the order of the conditioning is called Bayes’ rule, after Thomas
Bayes.

AN EXAMPLE FROM GENETICS 13

Exercise 2.2. Calculate the remaining conditional probabilities.

The following exercise, inspired by problems in screening, demonstrates
one of the many uses of Bayes’ rule.

Exercise 2.3. A screening test has a probability of 0.90 of being positive in true
cases of a disease (the sensitivity) and a probability of 0.995 of being negative in
people without the disease (the specificity). The prevalence of the disease is 0.001
so before carrying out the test, the probability that a person has the disease is
0.001. -

(a) Draw a probability tree in which the first level of branching refers to having
the disease or not, and the second level to being positive or negative on the
screening test. Fill in the probabilities for each of the branches and calculate the
probabilities for the four possible combinations of disease and test.

(b) Draw the tree the other way, so that the first level of branching refers to
being positive or negative on the screening test and the second level to having
the disease or not. Fill in the probabilities for the branches of this tree. What
is the probability of a person having the disease given that they have a positive
test result? (This is called the positive predictive value.)

2.3 An example from genetics

Our next exercises illustrate a problem in genetic epidemiology. For a
specified genetic system (such as the HLA system), each person’s genotype
consists of two haplotypes,* one inherited from the mother and one from
the father. If a mother has haplotypes (a,b), then one of these is passed to
the offspring with probability 0.5. Likewise for a father’s haplotypes, (c,d)
say. Fig. 2.3 shows the probability tree for the genotype of the offspring.
The presence of haplotype (a) carries a probability of disease of 0.05 while,
in its absence, the probability is only 0.01.

Exercise 2.4. Work out the probabilities for the four tips of the probability
tree which end in disease (F). Hence work out the probabilities of the four pos-
sible genotypes conditional on the fact that the offspring is affected by disease
(Fig. 2.4). '

Exercise 2.5. In practice the probabilities of disease conditional upon genotype
are not known constants but unknown parameters. Repeat the previous exercise
algebraically, replacing the probabilities 0.01 and 0.05 by = and 67 respectively.
How are the conditional probabilities changed if the subject’s father has genotype
(c,0)? -

The parameter 8, described in Exercise 2.5, is a risk ratio,

_ Risk of disease if haplotype (a) present
" Risk of disease if haplotype (a) absent

*The word haplotype refers to a group of genetic loci which are closely linked and
therefore inherited together.
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From mother From father Offspring
Disease, F
0.5 c (asc) <
a
0.5 Disease, F
0.5 4 (a,d) <
Disease, F
05 c (b,c) <
0.5
b
Dlsease,
N4 kg <

Fig. 2.3. Disease conditional upon inheritance.

(a,c)
(a,d)

(byc)

(b,d)

Fig. 2.4. Inheritance conditional upon disease.

It measures the strength of statistical dependence (or association) between
the presence of haplotype (a) and occurrence of disease. The above exercise
shows that the conditional probability of genotype given the presence of
disease and parental genotypes depends only on this risk ratio.

SOLUTIONS 15
Solutions to the exercises
2.1
Pr(E4+ and S) = 0.4 x 0.985 = 0.394
Pr(E— and S) = 0.6 x 0.995 = 0.597

The overall probability of failure is 0.006 + 0.003 = 0.009.

2.2 See Fig.-2.5. The conditional probabilities of E+ and E— given

survival are 0.394 0.597
0.991 03976, 0.991 0.6024
2.3 (a) See Fig. 2.6. -
(b) See Fig. 2.7. The probability of disease given a positive test result is

0.0009
0.005895

Note that this is much lower than 0.90, the sensitivity of the test. The
remaining conditional probabilities are calculated in a similar manner.

= 0.1527.

2.4 - The probabilities for each of the four tips are obtained by multiply-
ing along the branches of the tree. The sum of the four probabilities is
0.0300. The conditional probabilities sum to 1.0.

Genotype Disease Probability Conditional prob.
(a,c) F 0.5x 0.5 x 0.05=0.0125 0.0125/0.03 = 0.417
(a,d) F 0.5 x 0.5 x 0.05 = 0.0125 0.417
(b,c) F 0.5 x 0.5 x 0.01 =0.0025 0.0025/0.03 = 0.083
(b,d) F 0.5 x 0.5 x 0:01 = 0.0025 0.083
Total 0.0300 1.0

2.5 Repeating the above calculations algebraically yields:

Genotype Disease Probability Conditional Prob.
(a,c) F 0.5 x 0.5 x 67 = 0.2567 0/(26 + 2)
(a,d) F 0.5 x 0.5 x 6 = 0.2507 6/(20 + 2)
(b,c) F 0.5x0.5 x 7 =0.257 1/(26 +2)
(b,d) F 0.5x0.5x7=0.257 1/(20 + 2)

Total . 0.257 (26 + 2) 1.0
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If the father has genotype (c,c) then he can only pass on (c) and the possible |
genotypes of offspring are (a,c) and (b,c). Prior to observation of disease
presence, these both have probabilities 0.5. Thus, for a subject known to
have disease, we have

Genotype Disease Probability

Conditional Prob.

(a,c) F 0.5 x 67 = 0.567 0/(6+1)
(b,c) F 0.5 x m = 0.57 1/(60+1)
Total 0.5m(6 + 1) 1.0
Probability
0.667 — E+ 0.006
F
0.009
0333\ g 0.003
0.3976_— E+ 0.394
0.991
S
0.6024 ™ g 0.597

Fig. 2.5. Probability tree for exposure given outcome.

D+

Test results, T, given disease status, D.

SOLUTIONS
Probability
09— T+ 0.0009
SN 0.0001
0.005_— T+ 0.004995
0.995 ™~ 7_ 0.994005

Probability
0.1527 D+ 0.0009
08473~ p_ 0.004995
D+ 0.0001
D— 0.994005

Fig. 2.7. Disease status given test results.

17



3
Likelihood

The purpose of models is to allow us to use past observations (data) to
make predictions. In order to do this, however, we need a way of choos-
ing a value of the parameter (or parameters) of the model. This process
is called parameter estimation and this chapter discusses the most impor-
tant general approach to it. In simple statistical analyses, these stages of
model building and estimation may seem to be absent, the analysis just
being an intuitively sensible way of summarizing the data. However, the
analysis is only scientifically useful if we can generalize the findings, and
such generalization must imply a model. Although the formal machinery
" of modelling and estimation may seem heavy handed for simple analyses,
an understanding of it is essential to the development of methods for more
difficult problems.

In modern statistics the concept which is central to the process of pa-
rameter estimation is likelihood. Likelihood is a measure of the support
provided by a body of data for a particular value of the parameter of a
probability model. It is calculated by working out how probable our ob-
servations would be if the parameter were to have the assumed value. The
main idea is simply that parameter values which make the data more prob-
able are better supported than values which make the data less probable.
In this chapter we develop this idea within the framework of the binary
model.

3.1 Likelihood in the binary model ,

Fig. 3.1 illustrates the outcomes observed in a small study in.which 10
subjects are followed up for a fixed time period. There are two possible
outcomes for each subject: failure, such as the development of the disease of
interest, or survival. We adopt a binary probability model for the outcome
for each subject in which failure has probability = and survival has proba-
bility 1 — w. The complete tree would have many branches but only those
corresponding to the observed study result is shown in full. To calculate
the probability of occurrence of this result we simply multiply probabilities
along the branches of the tree in the usual way:

axTx(1=7) % x(1-7)=(x)*1-7)°.

LS
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Subject

m @ ©® @ ©® © O © © @y

S8

Fig. 3.1. Study outcomes for 10 subjects.

This expression can be used to calculate the probability of the observed
study result for any specified value of w. For example, when 7 = 0.1 the
probability is

(0.1)* x (0.9)% = 5.31 x 107°

and when 7 = 0.5 it is
(0.5)* x (0.5)% = 9.77 x 10™%.

The results of these calculations show that the probability of the observed
data is greater for m = 0.5 than for # = 0.1. In statistics this is often
expressed by saying that # = 0.5 is more likely than 7 = 0.1, meaning
that the former value is better supported by the data. In everyday use the
words probable and likely mean the same thing, but in statistics the word
likely is used in this more specialized sense. .

Exercise 3.1. Is # = 0.4 more likely than 7 = 0.57

The result of the expression

(m)*a -,

is a probability, but when we use it to assess the amount of support for
different values of = it is called a likelihood. More generally, if we observed
D failures in N subjects, the likelihood for = would be

(W)D(l - ﬂ-)N_‘D>

and we shall call this expression the Bernoulli likelihood, after the Swiss
mathematician. Because there are so many possible outcomes to the study,
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Fig. 3.2. The likelihood for .

the likelihood (which is the probability of just one of these) is a small
number. However, it is not the absolute value of the likelihood which should
concern us, but its relative value for different choices of 7.

Returning to our numerical example, Fig. 3.2 shows how the likelihood
varies as a function of 7. The value 7 = 0.4 gives a likelihood of 11.9 x 1074,
which is the largest which can be achieved. This value of 7 is called the
most likely value or, more formally, the mazimum likelihood estimate of .
It coincides with the observed proportion of failures in the study, 4/10.

3.2 The supported range for =

The most likely value for 7 is 0.4, with likelihood 11.9x10~%. The likelihood
for any other value of 7 will be less than this. How much less is measured
by the likelihood ratio, which takes the value 1 when 7 = 0.4 and values less
than 1 for any other values of 7. This provides a more convenient measure
of the degree of support than the likelihood itself. It can be used to classify
values of 7 as either supported or not according to some critical value of
the likelihood ratio. Values of n with likelihood ratios above the critical
value are reported as ‘supported’, and values with likelihood ratios below
this critical value as ‘not supported’. The supported range for 7 is the set
of values of 7 with likelihood ratios above the critical value. The choice of
the critical value is a matter of convention.

For our observation of 4 failures and 6 survivors, the likelihood ratio

as a function of 7 is shown in Figure 3.3. We have used the number 0.258
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Fig. 3.3. The likelihood ratio for .

for the critical value of the likelihood ratio and indicated the limits of the
supported range with the two arrows. The range of supported values for 7 is
rather wide in this case: from 0.17 to 0.65.* For any choice of critical value
the width of the supported range reflects the uncertainty in our knowledge
about 7. The main thing which determines this is the quantity of data
used in calculating the likelihood. For example, if we were to observe 20
failures in 50 subjects, the most likely value of 7 would still be 0.4, but the
supported range would be narrower (see Figure 3.4).

Although the concept of a supported range based on likelihood ratios
is intuitively simple, it requires some consensus about the choiceé of critical
value. The achievement of this has not proved easy, since many scientists
lack an intuitive feel for the amount of uncertainty corresponding to a stated
numerical value for the likelihood ratio. As a result, statistical theorists have
tried to find ways to measure the uncertainty about the value of a parameter
in terms of probability which, it is argued, is more easily interpreted. The
way o+ doing this which is most widely accepted in the scientific community
is by imagining a large number of repetitions of the study. This approach
is known as the frequentist theory of statistics and leads to a confidence
interval for m rather than a supported range. Another approach, often
favoured by mathematicians, is based on a probability measure for the
subjective ‘degree of belief’ that the parameter value lies in a stated credible

*These values were obtained from the graph, as illustrated. We shall be describing
more convenient approximate methods for their computation in Chapter 9.
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Fig. 3.4. The likelihood ratio based on 20 failures in 50 subjects.

interval. This is the Bayesian theory of statistics.

Luckily for applied scientists, these philosophical dlﬁ'erences can be re-
solved, at least for the analysis of moderately large studies. In this case,
we will show in Chapter 10 that the supported range based on a likelihood
ratio criterion of 0.258 coincides approximately with a 90% confidence in-
terval in the frequentist theory of statistics and a 90% credible interval in
the Bayesian theory. We shall, therefore, set aside these difficulties for the
present and continue to develop the idea of likelihood, which holds a central
place in both theories of statistics and from which most of the statistical
methods of modern epidemiology can be derived.

3.3 The log likelihood

The likelihood, when evaluated for a particular value of the parameter, can
turn out to be a very small number, and it is generally more convenient
to use the (natural) logarithm of the likelihood in place of the likelihood
itself.! When combining log likelihoods from independent sets of data the
separate log likelihoods are added to form the combined likelihood. This is
because the likelihoods themselves, being the probabilities of independent
sets of data, are combined by multiplication. The log likelihood for , in

tReaders not completely familiar with the logarithmic function, log(z) and its inverse,
the exponential function, exp(z), are referred to Appendix A.
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Fig. 3.5. The log likelihood ratio for .

this example, is
4log(r) + 6log(1 — 7).

Exercise 3.2. Calculate the log likelihood when n = 0.5 and when 7 = 0.1.

The log likelihood takes its maximum at the same value of 7 as the likeli-
hood, namely n = 0.4, so its maximum is

410g(0.4) + 610g(0.6) = —6.730.

To obtain the log likelihood ratio, this maximum must be subtracted from
the log likelihood. A graph of the log likelihood ratio is shown in Fig. 3.5.
The supported range for w can be found from this graph in the same way
as from the likelihood ratio graph, by finding those values of 7 for which
the log likelihood ratio is greater than

log(0.258) = —1.353.

Exercise 3.3. Calculate the log likelihood ratios fof 7 =0.1 and m = 0.5. Are
these values of 7 in the supported range?

In general, the log hkellhood for w, when D subjects fail and N — D

survive, is
Dlog(n} + (N — D)log(1 — ).
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‘We shall show in Chapter 9 that this expression takes its maximum value
when 7 = D/N, the observed proportion of subjects who failed.

If the binary model is parametrized in terms of the odds parameter, €,
by substituting /(1 + ) for 7 and 1/(1 + £2) for (1 — 7), we obtain the
log likelihood

Dlog(£2) — Nlog(l + Q).

This takes its maximum value when Q@ = D/(N — D), the ratio of the
number or failures to the number of survivors. The maximum value of the
log likelihood is the same whether the log likelihood is expressed in terms
of mor 2.

3.4 Censoring in follow-up studies

In our discussion of follow-up studies of the occurrence of disease events, or
failures, we have assumed that all subjects are potentially observed for the
same fixed period. In most practical studies there will be some subjects
whose follow-up is incomplete. This will occur

e when they die from other causes before the end of the follow-up in-
terval;

e when they migrate and are no longer covered by the record system
which registers failures;

e when they join the cohort too late to complete the follow-up period.

In all three cases the observation time for the subject is said to be censored.
In fact, the first type of loss to follow-up, failure due to a competing cause,
is rather different from the remaining two, but they are usually grouped
together and dealt with in the same way. In Chapter 7 we shall discuss
the justification for this practice. For the moment, we assume it to be
reasonable.

Censoring puts our argument in some difficulty. The model allows for
only two outcomes, failure and survival, while our data contains three,
failure, survival, and censoring. For the present we shall avoid this difficulty
with a simple pretence. As an illustration, suppose we have followed 1000
men for five years, during which 28 suffered myocardial infarction and 972
did not, but observation of 15 men was censored before completion of five
years follow-up. If all 15 men were withdrawn from study on the first day of
the follow up period, the size of the cohort would be 985 rather than 1000.
Conversely, if they were all withdrawn on the last day, censoring could
be ignored and the cohort size treated as a full 1000. When censoring is
evenly spread over the study interval, we would expect an answer which
lies somewhere in between these two extreme assumptions. This suggests
treating the effective cohort size as 992.5 — mid-way between 985 and
1000. This convention is equivalent to the assumption that 7.5 subjects
are censored on the first day of follow up and 7.5 on the last day.
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Table 3.1. Genotypes of 7 probands and their parents
Proband’s Parents’ genotypes
genotype Mother  Father  Number
(a,c) (8,b) (c,d) 4
(b,d) (a,b) (c,d) 1
(a,c) (a,b) (c,c) 2

With only 15.subjects lost to follow up through censoring, this crude
strategy for dealing with censoring is quite satisfactory, but if 150 were
censored it could be seriously misleading. In Chapter 4 we shall see how
this problem can be dealt with by extending the model.

3.5 Applications in genetics

The use of the log likelihood as a measure of support is of considerable
importance in genetics. However, in that field it.is conventional to use
logarithms to the base 10 rather than natural logarithms. Since the two
systems of logarithms differ only by a constant multiple (see Appendix A),
this is only a trivial modification of the idea.

As an illustration of the use of log likelihood in genetics, we continue
the example introduced in Exercises 2.4 and 2.5. Table 3.1 shows some
hypothetical data which might have formed part of that collected in a
study of an association between disease risk and presence of a certain HLA
haplotype. If we were to observe a set of families over time, in order
to relate the genotype to the eventual occurrence or non-occurrence of
disease, then we could calculate a likelihood based on the probability of
disease conditional upon genotype. However, such studies are logistically
very difficult and are rarely done. Instead it is more usual to obtain, usually
from clinicians, a collection of known cases of disease (probands) and their
relatives, and to compare the genotypes of probands with the predictions
from the model.

As in Exercise 2.5, we shall consider the model in which presence of a
given haplotype, (a) say, leads to a risk of disease @ times as high as in its
absence. Table 3.1 shows data concerning 7 probands and their parents.
For each of the genetic configurations shown in the table, we derived the
conditional probability of the genotype of a proband conditional on the
genotypes of parents in Exercise 2.5 and we showed that these probablhtles
depend only on the risk ratio parameter 6.

Exercise 3.4. Write down the expression for the log likelihood as a function
of the unknown risk ratio, 8, associated with presence of haplotype (a). What
is the log likelihood ratio for the value § = 1 (corresponding to there being no
increase in risk) as compared with § = 6.0 (which is the most likely value of § in
this case). Is the value # = 1 supported?
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Solutions to the exercises

3.1  The probability of the observed data when 7 = 0.4 is
0.4* x 0.6% = 1.19 x 1073,

which is more than the probability when 7 = 0.5. It follows that 7 = 0.4
is more likely than 7 = 0.5.

3.2 The log likelihood when 7=0.5 is
410g(0.5) + 61og(0.5) = —6.93.
The log likelihood when 7 = 0.1 is

410g(0.1) + 61og(0.9) = —9.84.

0

3. The maximum log likelihood, occurring at 7 = 0.4, is
41log(0.4) + 6log(0.6) = —6.73

so that the log likelihood ratio for 7 = 0.5 is —6.93 — (—6.73) = —0.20. For
m=0.1it is —9.84 — (—6.73) = —3.11. Thus 0.5 lies ‘within the supported
range and 0.1 does not.

3.4  From the solution to Exercise 2.5, the conditional probabilities for
each of the three genetic configurations are 6/(26 + 2), 1/(20 + 2), and
6/(8 + 1). Thus, the log likelihood is

0 1 0
— J+1log———) +2l0g ().
41°g<29+2)+ 1°g<29+2)+ 1Og<6)+1)

At 6 = 1.0 this takes the value

1 1 1
= Z)+2log (=) =-s.
4log <4) + 1log <4) + 2log (2) 8.318,

and at 6 = 6.0 (the most likely value) it is

6\ 1 6

The log likelihood ratio for # = 1 is the difference between these, —1.981.
Thus the parameter value # = 1 lies outside the limits of support we have
suggested in this chapter.




4
Consecutive follow-up intervals

In the last chapter we touched on the difficulty of estimating the probability
of failure during a fixed follow-up period when the observation times for
some subjects are censored. A second problem with fixed follow-up periods
is that it may be difficult to compare the results from different studies; a
five-year probability of failure can only be compared with other five-year
probabilities of failure, and so on. Finally, by ignoring when the failures
took place, all information about possible changes in the probability of
failure during follow—u7p is lost.

The way round these difficulties is to break down the total follow-up
period into a number of shorter consecutive intervals of time. We shall refer
to these intervals of time as bands. The experience of the cohort during
each of these bands can then be used to build up the experience over any
desired period of time. This is known as the life table or actuarial method.
Instead of a single binary probability model there is now a sequence of
binary models, one for each band. This sequence can be represented by a
conditional probability tree. ' ‘

4.1 A sequence of binary models

Consider an example in which a three-year follow-up interval has been
divided into three one-year bands. The experience of a subject during
the three years may now be described by a sequence of binary probability
models, one for each year, as shown by the probability tree in Fig.4.1. The
four possible outcomes for this subject, corresponding to the tips of the
tree, are

1. failure during the first year;

2. failure during the second year;

3. failure during the third year;

4. survival for the full three-year period.
The parameter of the first binary model in the sequence is n!, the prob-
ability of failure during the first year; the parameter of the second binary
model is 72, the probability of failure during the second year, given the
subject has not failed before the start of this year, and so on. These are
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Fig. 4.1. A sequence of binary probability models.

all conditional probabilities — conditional on not having failed before the
start of the year in question. The reason the probabilities are written with
superscripts is that we have adopted the convention that a superscript is
used to index time, and a subscript is used to index subjects or groups
of subjects. It is important to distinguish these two situations, and using
subscripts for both can be confusing.*

' Suppose, for illustration, that the probability of failure is 0.3 in the first
year; 0.2 in the second year, given the subject survives the first year without
failure; and 0.1 in the third year, given the subject survives the first two
years without failure. These illustrative values for the three conditional
probabilities are shown on the conditional probability tree in Fig.4.2.

In this tree, the four final outcomes listed above correspond to the
tips of the tree, and their probabilities can be calculated by multiplying
conditional probabilities along the branches of the tree in the usual way.
For example, the probability of the second outcome is made up from the
probability that the subject survives the first year (0.7), multiplied by the
probability that the subject fails during the second year (0.2). Using this
rule, the four possible outcomes for any subject occur with probabilities:

0.3
0.7 x 0.2
0.7x0.8x0.1
0.7x0.8x0.9

*Note that 72 does not refer to w x 7. To avoid confusion we shall always use brackets
when taking powers; for example, the square of 7 will be written (m)2.
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Fig.,4.2. Illustrative values for the conditional probabilities.

These probabilities work out to be 0.3, 0.14, 0.056, and 0.504, and these
add to 1, as they should, since there are no other possible outpomes. The
probability of failing at some stage is

0.3 +0.14 + 0.056 = 0.496.

More conveniently this probability can be found by subtracting from 1 the
probability of surviving the three. years without failing, giving

1~ 0.504 = 0.496.

The probabilities of surviving one, two, and three years without failing
are called the cumulative survival probabilities for the cohort. They are
calculated by mulmhditional probabilities of surviving each
year, and in this case are:

0.7
0.7 x 0.8
0.7 x 0.8 x 0.9.

which work out to be 0.7, 0.56, and 0.504.

Exercise 4.1. In a three-year follow-up study the conditional probabilities of
failure during the first, second, and third years are 0.05, 0.09, and 0.1? respec-
tively. Draw a probability tree for the possible outcomes for a new 51.1}E>_]‘ect, and
label the branches of the tree with the appropriate conditional probabilities. Cal-
culate the probability of each of the outcomes, and the probabilities of surviving

A
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100

Fig. 4.3. Survival of 100 subjects through three time bands.

one, two, and three years without failing. Calculate also the probability of failing
at some time during the three-year follow-up.

4.2 Estimating the conditional probabilities of failure

Suppose that 100 subjects join the cohort at the start of the three-year
interval and that 10 fail during the first year, 15 during the second, and 8
during the third, leaving 67 who survive until the end of three years (see
Fig.4.3). Assuming the same conditional probabilities of failure for each
of the 100 subjects, these data can be used to estimate their most likely
values. '

Intuitively it seems sensible to use the experience of those subjects
who are observed in each year to estimate the conditional probability of
failure during that year. The most likely values of the three conditional
probabilities would then be '

0 15 8
100" 90° 75’

but is this a legitimate thing to do? It corresponds to regarding the three-
year follow-up study as equivalent to three separate and independent one-
year follow-up studies in which the subjects come from the survivors of the

previous year. In fact this is a legitimate thing to do because the likelihood .

for m*, 7%, and 7% is the same whether the data aré regarded as coming
from one three-year study or from three one-year studies. This may be
shown algebraically as follows.
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The probabilities of the four possible outcomes in the three-year study

are

!

(1—n)m?
(1—-m)(1—72)r*
(1—a))(1~7n2)(1—73)

A subject who fails during the first year therefore contributes
log(m")
to the log likelihood. A subject who fails during the second year contributes
log(1 — ') + log(7?),
a subject who fails during the third year contributes
log(1 — m) +log(1 — 72) + log(n*),
and,a subject who survives all three years contributes

log(1 — 7t + log(1 — 72) + log(1 — 73).
Multiplying these by the numbers of subjects with each out.cor‘ne, that is
10, 15, 8, and 67 respectively, and adding, gives a total log likelihood of

10log(m!) + 90log(1 — )
+15log(n2) + 75log(1 — %)
+8log(m®) + 67log(1 — 73).

This is the same as the log likelihood obtained by regarding the data as
from three separate and independent one-year studies; the first bz?.sed on 10
failures and 90 survivors, the second on 15 failures and 75 survivors, and
the third on 8 failures and 67 survivors.

. 2 3
Exercise 4.2. If we were to adopt the more restrictive model that nt, w2, x% are
all equal with common value 7, what would be the most likely value of 77

This exercise makes it clear that, in the analysis of such studi?s, the basic
atom of data is not the subject, but the observation of one subject through
one time band.

4.3 A cohort life table

In cohorts where sﬁbjects are examined at yearly intervals,. the data are
often presented in the form of numbers of failures and censorings occurring
each year. An example is given in Table 4.1, which refers to survival of a
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Table 4.1. Survival by stage at diagnosis

Stage I Stage II
Year N D L N D L
1 110 5 5 234 24 3
2 100 7 7T 207 271 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 7 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13
10 24 1 8 34 4 6

group of women with cancer of the cervix diagnosed at either stage I or
stage II. The women are examined annually, and censoring occurs if they
cease attending the clinic; NV is the number alive and still under observation
at the start of each time band, D is the number who die during each band,
and L is the number censored during each band.

The estimation of survival experience of the stage I women over the first
~ four years is shown in Fig.4.4. Of the 110 subjects who started the first
year, 5 die and 5 are censored. The effective size of the cohort in the first
year is taken to be 107.5 and the probability of a subject dying during the
first year, given the subject was alive at the start of the year, is estimated
to be 5/107.5 = 0.0465. The conditional probability of surviving the year
is estimated to be

1—0.0465 = 0.9535.

The calculations of failure and survival probabilities are shown in Fig.4.4.
The cumulative survival probabilities are found by multiplying the condi-
tional survival probabilities for each year. For example, the cumulative
probability of surviving 3 years is

0.9535 x 0.9275 x 0.9152 = 0.8093.

Exercise 4.3. Using Table 4.1, draw a tree showing the survival experience for

stage II women over the first four years, and calculate the conditional survival

probabilities for each of these years.

A table of cumulative survival probabilities by year is called a life table,
and a plot of the cumulative survival probabilities against years survived
is called a survival curve. The survival curves for both stage I and stage II
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5/107.5 = 0.0465

Fig. 4.4. Estimated conditional probabilities for stage 1 women.

women are shown in Fig.4.5. It is conventional to start survival curves at a
probability of one for surviving at least zero years. These plqts are useful
for studying whether the probability of failure is changing with follov;.z—up
time, and for calculating survival probabilities for different periods of time.

Exercise 4.4. Use Fig.4.5 to read off the five-year survival probabilities in each
of the two groups.

4.4 The use of exact times of failure and censoring

In the calculations described above, the conditional probability of failure
during each time band has been estimated by assuming, as in Chapter 3,
that half the losses during the band occurred at the start and half at the
end. If the individual times at which failure (or censoring) occur are known
then it is possible to avoid this assumptions by choosing the ba,nds.so short
that each failure occupies a band by itself. Such a choice of bands is 'shown
in Fig.4.6 for the early follow-up experience of 50 subjects. The horizontal
line represents follow-up time, failures are marked as e, and losses as X.
The bands are shown by vertical bars. Only the first few events are shown.
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Fig. 4.6. Early follow-up experience of 50 subjects.

F01 bands in which there are no failures the estimated survival probability

s 1. For bands which contain a failure the estimated survival probability
is 1 — 1/N where N is the number at risk just before the failure. Thus for
the band which contains the first failure N = 49 and the estimated survival
probability is 1 — 1/49 = 48/49. The estimate of the cumulative survival
probability up to the end of this band is

1x1x---x48/49 = 0.9796.
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For the band which contains the second failure N = 46, so the estimated
survival probability for this band is 1—1/46 = 45/46. The cumulative prob-
ability of survival up to the end of the fourth band is therefore estimated
at

1x---x48/49 x 1 x --- x 45/46 = 0.9583.

These calculations continue until there are no more bands which contain
failures.

The bands containing each failure can be made so short that they refer
to the actual time of failure. When this is done the cumulative survival
probability over time takes the value 1 until the first failure, when it drops
to 0.9796; then it stays at 0.9796 until the second failure when it drops to
0.9583, and so on. The plot of cumulative survival probability versus time
survived takes the stepped shape shown in Fig.4.6, where the steps occur
at the failure times.

This method of estimating the cumulative survival probabilities is called
the Kaplan—Meier method, after the authors of the paper which showed
that this procedure yields the most likely value of the survival curve. It is
widely used in clinical follow-up studies for which individual failure times
are known. If the failure times are measured exactly the failures will all
occur at separate times, but if they are measured to the nearest month (for
example) then there may be several failures at the same-time. In this case
the probability of failure is estimated by dividing the number of failures
at that failure time by the total number of subjects at risk just before the
failure time. If losses also occur at this time then by convention, they are
included in the number at risk.

4.5 An example of the Kaplan—Meier method

Table 4.2 shows the time from diagnosis to death from melanoma, or loss to
follow-up, for 50 subjects. Times are in complete months so that subjects
dying during the first month are recorded as surviving one month, and
so on. For two subjects diagnosis took place at death, so the time was
recorded as zero.

Note that probabilities of failure are estimated only for times at which
failures occurred. The first of these is at time zero; the number at risk is 50,
with 2 failures, so the probability of failure at this time point is 2 /50 = 0.04,
and the survival probability is 1 — 0.04 = 0.96. The next time at which a
failure occurs is one month; thenumber at risk is 48, with one failure, so the
probability of failure at this time point is 1/48 = 0.0208 and the probability
of surviving is 1 —0.0208 = 0.9792. The next time at which a failure occurs
is at 2 months, when there are two failures. The probability of failure is
2/47 = 0.0426, and the survival probability is 1—0.0426 = 0.9574. At three
months there is one failure and one loss to follow-up. In fact this loss was
a death from a cause other than melanoma, but when estimating survival
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Table 4.2. Cumulative survival probabilities from the Kaplan—Meier
method. Non-melanoma deaths (*) are counted as losses.

Conditional probability Cumulative prob.

Month N D L ofdeath of survival of survival
0 50 2 0.0400 0.9600 0.9600
1 48 1 0.0208 0.9792 0.9400
2 47 2 0.0426 0.9574 0.9000
3 45 1 1*  0.0222 0.9778 0.8800
8 43 1 0.0233 0.9767 0.8595
10 42 1 0.0238 0.9762 0.8391
12 41 1 1*  0.0244 0.9756 0.8186
13 39 1 0.0256 0.9744 0.7976
15 38 1 0.0263 0.9737 0.7766
18 37 1*

19 36 1 0.0278 0.9722 0.7551
21 35 1

27 34 2

30 32 1

33 31 1 1 0.0323 0.9677 0.7307
34 20 1 0.0345 0.9655 0.7055
38 28

40 27

41 26 1 0.0385 0.9615 0.6784
43 25 1

44 24 1

46 23 1

54 22 1

55 21 1 0.0476 0.9524 0.6461
56 20 1 0.0500 0.9500 0.6138
57 19 2

60 17 1*

probabilities from melanoma alone it is counted as a loss to follow-up. (We
return to a fuller discussion of this point in Chapter 7.) The number at
risk was 45, with one failure, so the probability of failure is 1/45 = 0.022
and the probability of survival is 1 — 0.022 = 0.9778, and so on. A plot of
the cumulative survival probability against time is shown in Fig.4.7.
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Fig. 4.7. Cumulative survival probability by the Kaplan-Meier method.

Solutions to the exqrcises

4.1

See Fig.4.8. The probabilities of failure during the first, second and

third years are

0.05 0.95 x 0.09 = 0.0855 0.95 x 0.91 x 0.12 = 0.1037.

The probability of surviving three years is

0.95 x 0.91 x 0.88 = 0.7608.

The survival probabilities for the three years are

0.95 0.8645 0.7608.

The probability of failure at some time during the three years is

or

4.2

0.05 + 0.0855 + 0.1037 = 0.2392

1—0.7608 = 0.2392.

The overall log likelihood is

33log(m) + 2321og(1 — 7),
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SOLUTIONS

which is equivalent to observing 33 failures in 265 subjects. The most likely
value of 7 is, therefore 33/265 = 0.125. l

4.3 See Fig4.9.

4.4  The five year survival probabilities from Fig.4.5 are 0.78 (Stage I)
and 0.51 (Stage II).

24/232.5 = 0.1032

Fig. 4.9. Estimated conditional probabilities for stage II women.

Fig. 4.8. Solution to exercise 4.1.



Rates

We have shown how, by splitting the follow-up period into small enough
bands, the importance of arbitrary assumptions about when the losses oc-
cur can be minimized. We now follow this argument to its logical conclusion
and divide the follow-up into infinitely small time bands.

5.1 The probability rate

As the bands get shorter, the conditional probability that a subject fails
during any one band gets smaller. When a band shrinks towards a single
moment of time, the conditional probability of failure during the band
shrinks towards zero, but the conditional probability of failure per unit
time converges to a quantity called the probability rate- This quantity is
sometimes called the instantaneous probability rate to emphasize the fact
that it refers to a moment in time. Other names are hazard rate and force
of mortality. :

The probability rate refers to an individual subject. This is counter-
intuitive to many epidemiologists, who think of a rate as an empirical
summary of the frequency of failures in a group observed over time. We
show in the next section that such a summary is, in fact, the most likely
value of the common probability rate for the subjects in the group. It
is general practice in epidemiology to refer to both the probability rate
and its estimated value as the rate, even though this leads to many logical
absurdities. We have tried to keep as close as possible to this tradition,
while avoiding the logical contradictions, by referring to the probability
rate as the rate parameter and its estimated value as the observed rate.

5.2 Estimating the rate parameter

wven though the rate parameter refers to a single individual it is not pos-
sible to estimate its value from the experience of that individual. The
estimate must be based on the experience of a group of subjects assumed
to have the same rate. Similarly, even though the rate parameter refers to
a single moment of time, its estimated value is usually based on a period of
follow-up over which the rate is assumed to be constant. The estimated rate
for this period then refers to the constant value which the rate parameter

o
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Fig. 5.1. The follow-up experience of 7 subjects.

takes at all time points during the period.

The rate parameter over a follow-up period is estimated by dividing the
period into a number of small time bands of equal length and estimating
the common probability of failure for each of the bands. This is divided
by the length of a band to get the rate per unit time. The process is
illustrated using the follow-up experience of 7 subjects shown in Fig. 5.1,
in which the follow-up experience of the subjects is shown as lines which
end when follow-up ends. The lines for those subjects who fail end with a e,
while those whose observation time is censored end with a short bar. The
follow-up period has been divided into 10 short bands and for the present
we shall assume that follow-up always stops at the end of a short band.
From the figure we see that the follow-up of subject 1 stops after 7 bands
due to censoring. For subject 6 the follow-up stops after 5 bands when the
subject fails, and so on.

Exercise 5.1. How many observations of one subject through one time band
are observed? How many of these ended in failure?

Assuming that the rate parameter is constant over the follow-up period, the
conditional probability of failure is the same for all bands and its most likely
value is 2/36. The most likely value of the corresponding rate parameter is
2/36 divided by the length of the bands. Suppose for illustration that each
band has length 0.05 years. The most likely value of the rate parameter is
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then

2

- 111 .
(36 x 0.05) per yeat

Note that 36 x 0.05, which equals 1.8 years, is the total observation time
for the 7 subjects.

Now suppose that five times as many bands are used, so that each is
0.01 years in length. The most likely value of the probability of failure for
these bands is 2/180, but the most likely value of the corresponding rate
stays the same because there are now 180 bands of length 0.01 years and
180x 0.01 is the same as 36 x 0.05, both being equal to the total observation
time, added over subjects. In general, then, as the bands shrink to zero,
the most likely value of the rate parameter is

Total number of failures
- Total observation time °

Note that assumption that events occur at the end of bands is automatically
true when the bands shrink to zero. This mathematical device of dividing
the time scale into shorter and shorter bands is used frequently in this
book, and we have found_it useful to introduce the term clicks to describe
these very short time bands.

Time can be measured in any convenient units, so that a rate of 1.11 per
year is the same as a rate of 11.1 per 10 years, and so on. The total observa-
tion time added over subjects is known in epidemiology as the person-time
of observation and is most commonly expressed as person-years. Because
of the way they are calculated, estimates of rates are often given the units
per person-year or per 1000 person-years.

The use of the general formula for the estimated value of a rate is now
illustrated using data from a computer simulation of 30 subjects who are
liable to only one disease (the failure) and the follow-up is indefinitely long,
so that eventually all subjects develop the disease. The only variable in
the outcome is how long it takes for the disease to develop, and these times
are shown in Table 5.1.

Exercise 5.2. Using the time interval from the start of the study to the moment
when the last subject develops the disease, find the total observation time for the
30 subjects and hence estimate the rate for this interval. Give your answer per
10® person-years as well.

Exercise 5.3. The previous exercise is rather unrealistic. Real follow-up studies
are of limited duration and not all of the subjects will fail during the study period.
Estimate the rate from a study in which the same subjects are observed only for
the first five years.
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Table 5.1. Time until the disease develops, for 30 subjects

Subject Years Subject Years

1 19.6 16 0.6
2 10.8 17 2.1
3 14.1 18 0.8
4 3.5 19 8.9
5 4.8 20 11.6
6 4.6 21 1.3
7 12.2 22 34
8 14.0 23 15.3
9 3.8 24 8.5
10 12.6 25 21.5
11 12.8 26 8.3
12 121 27 0.4
13 4.7 28 36.5
14 ' 3.2 29 11
15 7.3 30 1.5

5.3 The likelihood for a rate -

The argument of the last section, although leading to the most likely value
of the rate parameter, does not allow us to explore the support for other
values. In this section we shall obtain a formula for the likelihood for a
rate parameter.

Consider a more general example in which D failures are observed for
a total of N clicks of time, each of duration h years, where h is very small
and N is very large. The total observation time in yearsis Y = Nh. Let 7
be the conditional probability of failure during a click. Then the likelihood

for 7 is
(mP1—mN-P.

Let the corresponding rate parameter be A, where, because h is small,
A=m/h.
The likelihood for A follows by replacing 7 by Ah, and is
(AR)P(1 = XR)N-D.
The log likelihood for A is therefore

Dlog()) + Dlog(k) + (N — D)log(1 — Ah).
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To see what happens when time is truly continuous, consider the be-
haviour of this expression as the click duration, h, becomes progressively
shorter. Since the total observation time Y remains unchanged it follows
that the number of clicks, N, must become progressively larger. As h be-

comes smaller and N becomes larger, eventually NV — D becomes nearly the _

same as N, and \h becomes so small that
log(1 — Ah) = —Mh.

(This property of the logarithmic function is discussed in Appendix A.)
Making these substitutions, the log likelihood becomes \ ‘

Dlog()\) + Dlog(h) — NAh.

The term D log(h) does not depend on A and is irrelevant since it cancels
out in log likelihood ratios. Omitting this term and noting that Nh is the
total observation time, Y, we obtain the following simplified expression for
the log likelihood:

Dlog()) — AY.

The corresponding likelihood,
(NP exp(-2Y),

is called the Poisson likelihood after the French mathematician. As we
would expect from the previous section it takes its maximum value when
A=DJ/Y. ,

To illustrate the use of this likelihood, suppose 7 cases are observed and
the total observation time is 500 person-years. Then the log likelihood for
Als

7log(\) — 500\

A graph of the log likelihood ratio versus A is shown in Fig. 5.2. The
maximum value of the log likelihood occurs at

A = 7/500 = 0.014 per person-year.

The supported range for A may be found from the graph by reading off the
values of A at which the log likelihood ratio has reduced to —1.353. In this
case the graph shows that the supported range for X is from 7.0 x 1073 to
24.6 x 10~2 per person-year.

Exercise 5.4. Calculate the value of the log likelihood at A = 0.01, A = 0.014,
and A = 0.02. Using the fact that the log likelihood is at its maximum when
A = 0.014 calculate the log likelihood ratio for A = 0.01 and A = 0.02.
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Fig. 5.2. Log likelihood ratio for .

If we wish to estimate the rate over a restricted period of observation the
argument requires only trivial modification; only the person-clicks falling in
the period of interest contribute information so that D and Y refer to the
number of events and the observation time which occur within the period.

5.4 Cumulative survival probability in terms of the rate

Suppose a subject experiences a constant rate A with no possibility of loss
during the follow-up. The cumulative probability that he or she will survive
a given period of time, T, may be found from A by dividing the period into
N clicks, each of length h, so that T = Nh. The conditional probability
of failure at each click is Ah, so that the probability of surviving N such
clicks is

(1 - RN,

The log of this cumulative survival probability is
Nlog(l — M\h)
and since log(1— Ah) may be replaced by —\h when h is small this becomes

—ANh =-AT.
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The quantity AT is called the cumulative failure rate. With this terminol-
ogy we have the fundamental result that

log(Cumulative survival probability) == —Cumulative failure rate

Applying the antilog function, exp(), to both sides of this relationship yields '

the alternative form:

exp(—Cumulative failure rate)
= exp(—AT).

Cumulative survival probability

Exercise 5.5. Using your estimate of the rate for the 30 subjects shown in
Table 5.1 (Exercise 5.2), calculate the probability of survival for the first 5 years,
and hence the 5-year risk. Compare this with the proportion of subjects observed
to fail in this period (see Exercise 5.3).

An important special case concerns rare events, in which the cumulative
survival is large and the cumulative risk is small. Since log(l — z) =~ —=z
when z is small,

log(Cumulative survival probability) = log(1l — Cumulative risk)
~ —Cumulative risk,

so the cumulative risk and the cumulative failure rate are approximately
equal for rare events.

5.5 Rates that vary with time

We have assumed that the rate parameter is constant over the follow-up
period and this may be unrealistic over an extended follow-up. However,
provided the rate parameter is not changing too quickly, the follow-up pe-
riod can be divided into broad bands during which the rate can be assumed
to be constant. This implies abrupt changes in the rate parameter from
one band to the next, but even such a crude model proves useful in practice
provided the changes are not too large.

Consider the first band and let D! be the number of failures Y the
total observation time and A! the rate parameter. The log likelihood for
Alis

Dllog(\') — A1Y?
- and similarly for further bands. Thus once failures and total observation
time have been partitioned between the time bands estimation of band-
specific rates proceeds as before.

Exercise 5.6. Fig. 5.3 illustrates observation of three subjects across three time
bands, showing the observation time (years) for each subject in each band. What
are the estimated failure rates for each of the bands?
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Fig. 5.3. Survival of three subjects across three time bands.

The relationship between the cumulative survival probability over sev-
eral bands and the band-specific rates is also a simple generalization of our
earlier result. For a time interval which has been divided into three bands
of length T, T2, and T2, during which the rates are X!, A2, and A3, the
log survival probabilities for each band are —A'T?, —\?T2, and —X3T%
respectively. The log of the cumulative survival probability over all three
bands is therefore the sum of these, namely

—NT - X372 - N3T% = —(A'T" + N°T2 + X°T3).

The quantity (AT + 2272 + X3T3) is the cumulative failure rate over the
whole interval. It follows that the relationship

log(Cumulative survival probability) = —Cumulative failure rate

still holds when the rate varies from one band to the next.

The use of this relationship to calculate survival probabilities will be
demonstrated using the data for the survival of women diagnosed with
stage I cancer of the cervix, shown in Chapter 4. The time bands are
one year in length and we shall assume that the rate is constant within a
time band, but can vary between time bands. Since exact times of failure
and loss are not given we shall assume that, on average, each failure con-
tributes 0.5 years to the observation time in the band in which the failure
takes place, and similarly for losses. The total observation time during any

particular year of follow-up is then approximately
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Y (N-D-L)yx1+Dx05+Lx05

N —0.5D —0.5L,

Q

where N is the number alive at the start of the year, D is the number of

deaths, and L is the number of losses during the year. For the first band
N =110, L =5, and D = 5, so the observation time for the first year is

Y~ (110 — 0.5 x 5 — 0.5 x 5) = 105 woman-years

and the estimated rate is 5/105 = 0.0476.
For the second band N.= 100, L = 7, and D = 7, so the observation
time for the second year is .

Y2~ (100 — 0.5 x 7 — 0.5 x 7) = 93 woman-years

and the estimated rate is 7/93 = 0.0753.

Txercise 5.7. Estimate the failure rate for stage I subjects during the third
year.

The estimated cumulative failure rates for each year of the follow-up are
shown in Table 5.2. The column headed ‘cumulative survival probability’
is obtained using the relationship

Cumulative survival probability = exp(—Cumulative failure rate).

A life table constructed in this way is sometimes referred to as a modified

i life table.

Exercise 5.8. Calculate the cvmaulative rate over the last five years only, and
hence the probability that a woman survives for ten years given that she has
survived the first five.

5.6 Rates varying continuously in time

The assumption that the rate parameter is constant over broad bands of
time, but changes abruptly from one band to the next, is widely used,
but an alternative model, useful when exact times of failure and censoring
are known, is to allow the rate parameter to vary from click to click. In
Chapter 4 this kind of model led to the Kaplan—Meier estimate of the
survival curve; when using rates it leads to the estimate known as the
Aalen—Nelson estimate.

Fig. 5.4 shows the data that were used to describe the Kaplan-Meier
estimate in Chapter 4, but the stepped graph now refers to the cumulative
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Table 5.2. Modified life table for stage I women
Cumulative Cumulative
Year Rate rate survival probability
1 0.0476 0.0476 0.9535
2 0.0753 0.1229 0.8844
3 0.0886 0.2115 0.8094
4 0.0451 0.2566 0.7737
5 0.0000 0.2566 0.7737
6 0.0417 0.2983 0.7421
7 0.0800 0.3783 0.6850
8 0.0000 0.3783 0.6850
9 0.0000 0.3783 0.6850
10 0.0513 0.4296 0.6508
Number: 50 49 46
H—Pe—tett——bd—+—bedet—++—+
Time
Cumulative
failure
rate
0.0

Fig. 5.4. Early follow-up of 50 subjects: the Aalen—Nelson estimate.

failure rate, not the cumulative survival probability. During the first of .

these clicks the estimated rate is 0/(50h). Similarly for all clicks which
contain no failure the estimated rate is zero, so there is no addition to the
cumulative rate at any of these points in time. The cumulative rate graph
therefore remains horizontal during these clicks. For a click which contains
a failure the rate is 1/(Nh), where N is the number in the study just before
the click. Because this rate operates for a click of length h, the estimate of
the cumulative rate increases by

1 1
PN

Because the click can be thought of as being instantaneous, the cumulative

ar.
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Fig. 5.5. Cumulative rate using the Aalen-Nelson method.

rate jumps by this amount at the moment of occurrence of the failure. In
our example, the first jump is of size 1/49; the cumulative rate stays at
this value until the click which contains the second failure when it jumps
by a further 1/46, and so on.

The cumulative failure rate estimate may also be expressed as a cumu-
lative survival probability, using the now familiar relationship

Cumulative survival probability = exp(—Cumulative failure rate).

When this is done, the Aalen—Nelson estimate of the relationship of the
cumulative survival probability with time looks very similar to the Kaplan—
Meier estimate. Both have a stepped shape with steps at the times when
failures occur. For most of the follow-up period, the two estimates are very
close because of the approximate relationships,

log(l1-1/N) =~ -1/N
exp(-1/N) =~ 1-1/N

for large N. At the end of the interval N is sometimes small and the two
estimates may differ somewhat.

For reasons to be discussed in Chapter 7, it may be best to plot the
cumulative failure rate and not the survival probability, even though the
former is a little harder to interpret. One fairly clear message from the
plot of cumulative failure rate is how the failure rate varies with time. If
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the failure rate is constant then the cumulative rate will rise linearly with
time; if the rate is increasing the cumulative rate will rise non-linearly,
showing an increase in gradient with time; if the rate decreases with time
the cumulative rate will still rise, but now it will show a decrease in gradient
with time.

The Aalen-Nelson plot of the cumulative rate for the melanoma data,
introduced in Chapter 4, is shown in Fig. 5.5. This plot shows that the
rate is higher during the first 20 months than during the period from 20 to
60 months.

Exercise 5.9. Use the plot in Fig. 5.5 to obtain a rough estimate of the rate
during the first 20 months and during the period from 20 to 60 months

Solutions to the exercises

5.1  The total number of subjects observed through one band is
T+2+44+2+6+5+10= 36,

and 2 of these end in failure.

5.2  The total observation time for the 30 subjects is 140.1 4 121.8 =
261.9 years. The rate is 30/261.9 = 0.1145 per year, or 114.5 per 108
person-years.

5.3 The total observation time is now
5+5+5+35+48+46+5+...+1.5=115.8 years.

The total number of failures is 14 so the rate is 14/115.8 = 0.1209 per year,
or 120.9 per 10% person-years.

5.4  The log likelihood at A = 0.01 is
7log(0.01) — 500 x 0.01 = —37.236.

Similarly the log likelihoods at A = 0.014 and A = 0.02 are —36.881 and
—37.384. The log likelihood ratio at A = 0.01 is

(—37.236) — (—36.881) = —0.3550.

Similarly the log likelihood ratio at A = 0.02 is —0.5032.

5.5 When the rate is 0.1145 per year, the probability of surviving for 5

years is
exp(—0.11452 x 5) = 0.564
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so that the mortality risk is 0.436. The proportion of subjects who failed
in this period was, in fact, 14/30 = 0.467.

5.6  The estimated failure rates for the three bands are 1/13, 0/9, and

1/2 respectively. -

5.7  The approximate person-years observation in year 3 is
Y3 ~8—-05x7-05x7="79

and the estimated rate is 7/79 = 0.0886 per year.

5.8 The cumulative failure rate over the last five years is 0.173 so that
the probability that a woman survives for 10 years given that she has
survived the first 5 years is exp(—0.173) = 0.841.

5.9  The gradient of the first part of the cumulative rate curve, from 0
to 20 months, is roughly 0.28/20 = 0.014 per month, which is the rate over
this period (assumed constant). For the second period, from 20 to 60, the
gradient is roughly (0.48 —0.28)/(60 —20) = 0.005 per month, which is the
rate over the second period (assumed constant).




6
Time

6.1 When do we start the clock?

In Chapter 5 we discussed the variation of rates with time. In that dis-
cussion, by assuming that all subjects entered the study at time zero, we
implicitly interpreted time to mean time since entry into the study. How-
ever, there are many other ways of measuring time and some of these may
be more relevant. For example, in epidemiology, it is usually important to
consider the variation of rates with age, for which the origin is the date of
birth, or with time since first exposure, for which the origin is the date of
first exposure. Similarly, in clinical follow-up studies, time since diagnosis
or start of treatment may be an important determinant of the failure rate.
In different analyses, therefore, it may be relevant to start the clock at
different points. Some possible choices for this starting point are described
in Table 6.1.

6.2 Age-specific rates

Age is an extremely important variable in epidemiology, because the in-
cidence and mortality rates of most diseases vary with age — often by
several orders of magnitude. To ignore this variation runs the risk that
comparisons between groups will be seriously distorted, or confounded, by
differences in age structure.

The assumption that rates do not vary with age can be relaxed by
dividing the age scale into bands and estimating a different age-specific
rate in each band. If the follow-up period is short, so that the age of a

Table 6.1. Some time scales

Starting point Time scale

Birth Age

Any fixed date Calendar time
First exposure Time exposed
Entry into study Time in study
Disease onset Time since onset

Start of treatment Time on treatment
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Table 6.2. Entry and exit dates for the cohort of four subjects

Subject Born Entry Exit Age at entry Outcome

1 1904 1943 1952 39 Lost

2 1924 1948 1955 24 Failure

3 1914 1945 1961 31 Study ends

4 1920 1948 1956 28 Unrelated death

subject does not change appreciably during follow-up, age-specific rates
can be estimated by classifying subjects into age groups by their age at
entry. Each subject appears in only one age group and a separate rate is
estimated for each group. For longer studies it will be necessary to take
account of changing age during the study, and to treat age properly — as
a time scale. This scale is then divided into bands and a separate estimate
of the rate is made within each age band as described in Chapter 5. In
this latter analysis, a subject can pass through several age bands during
the course of the study. ’

To see how the failures and observation time are divided between age
bands consider the cohort of four subjects, shown in Table 6.2. Subject 1
is lost to follow-up in 1952, subject 2 fails in 1955, subject 3 is still under
observation when the study period ends, and subject 4 dies from an un-
related cause in 1956. The date when a subject joins the cohort is called
the entry date and the date when observation stops, for whatever reason,
is called the exit date. The time between the entry and exit dates is the
observation time for the subject. To simplify the exercises, we give dates
ounly as years and will assume that all events take place on the first day of
the year. In practice, times would be worked out as accurately as the data
allow.

ixercise 6.1. What are the observation times for the members of this cohort?

Figure 6.1 shows the observation of the subjects in‘ calendar time, while
Figure 6.2 shows it on a scale where time is measured from each subject’s
date of birth. To estimate a rate for a particular age band the failures are
allocated to the bands in which they occurred, and the observation time is
divided according to how long the subjects spend in each of the age bands.
For example, the age band 30-34, which is from exact age 30 to just less
than exact age 35, contains one failure and 10 person-years of observation
time, so the estimated rate is 1/10 per person-year.

In this example the observation times in the different time bands have
been obtained from the figure, but in practice the total observation time
in an age band is obtained by using the dates when the subject changes
age bands. For example, subject 1 is 39 years old on entry so he starts in
the age band 35-39. He changes age band in 1944 (when he is 40}, and
again in 1949 (when he is 45), and he leaves the study in 1952 (when he
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Fig. 6.1. Follow-up of four subjects by calendar time.
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Fig. 6.2. Follow-up of four subjects by age.

emigrates). The observation time he spends in the different age bands is
shown in Table 6.3. :

As a check, the total observation time for subject 1 is from 1943 to
1952 which is 9 years, equal to the sum of the separate times spent in the
different age bands.

Exercise 6.2. Subject 5 is born in 1931, joins the cohort in 1953, and is lost
to follow-up in 1957. Divide the observation time for this subject between the
five-year age bands shown in Figure 6.2.

Table 6.3. Time in each age band for subject 1

Age band Datein Date out Time

35-39 1943 1944 1
40-44 1944 1949 5
45-49 1949 1952 3
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Table 6.4. Woman-years and reference rates for a breast cancer study

Woman- E & W rate per

Age years 100000 woman-years
4044 975 113
45-49 1079 162
50-54 2161 151
55-59 2793 .183
60-64 3096 179

6.3 The expected number of failures

One reason for subdividing the total follow-up experience of a cohort into
age bands is to determine whether the observed number of failures is more
or less than we might have expected. Since mortality and incidence rates
usually increase quite sharply with age, the distribution of person years
observation between age bands is an extremely important determinant of
the number of events we would expect to observe.

Table 6.4 shows the partition of woman-years between age bands for
a cohort study of 974 women given a hormone treatment at menopause.
During the follow-up period, 15 new cases of breast cancer occurred in the
cohort. We might ask whether this is more or less than we would expect
from national rates.

The third column of the table shows the age-specific incidence rates of
breast cancer for England and Wales at the time the study was carried out.
If the rates in the study population are the same as in the rest of England
and Wales, the number of cases we would expect in each age band is simply
the product of the woman-years observation and the rate. Thus, for the
40-44 age band, the expected number of cases is

113 ‘
fo0000 — %

975 x

ixercise 6.3. Carry out these calculations for the remaining age groups and
calculate the total expected number of cases of breast cancer.

This exercise shows that 16.77 cases are expected from national rates using
the person years in the study. This expected number of cases is quite close
to the observed 15, so that there is little suggestion that the rates in this
‘cohort are unusual.

The expected number of cases, as calculated above, is not quite the
same as the expected number in the usual statistical sense. The latter
cannot depend upon the outcome of the study, but the former does, since
the total person-time of observation in the study varies according to how
many subjects fail and when. However, for the rare events studied by
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epidemiologists, this variation is small enough to be ignored.

6.4 Lexis diagrams

More than one time scale can be important in the same study. For example,
mortality rates from cancer of the cervix depend upon age, as a result of the
age-dependence of the incidence rate, and upon calendar time as a result
of changes in treatment, population screening, and so on. The situation
is further complicated by the strong dependence of the incidence of this
disease upon sexual behaviour, which varies from one generation to the
next.

The way to separate the effects of two time scales on a rate is to di-
vide each scale into bands, usually of equal width, and to make a separate
estimate of the rate for each pairing of bands. To see how this is done in
practice it is best to show the subjects relative to the two scales simulta-
neously, in what is called a Lezis diagram.

The four subjects in Table 6.2 are shown relative to both age and calen-
dar year simultaneously in the Lexis diagram in Figure 6.3. Each rectangu-
lar region in a Lexis diagram corresponds to a combination of two bands,
one from each scale. To estimate rates for these combinations of bands
the failures are allocated to the rectangles in which they occur and the
observation time for each subject is divided between rectangles according
to how long the subjects spends in each.

For example, subject 1 joins the cohort in 1943 aged 39. He changes
age bands one year later in 1944 then 5 years later in 1949. He changes
calendar periods in 1945 and 1950. Finally, observation stops in 1952. The
subdivision of the observation time for this subject between different age
and calendar period combinations is shown in Figure 6.4. Note that the
times in the different bands add to 9 years, the total observation time for
this subject. For each combination of age band and calendar period the
rate is estimated by dividing the number of failures by the person-time of
observation.

Exercise 6.4. Trace the progress of subject 1 through the squares in Figure 6.3
and verify the results given above. Divide the observation time for subject 2
between combinations of five-year bands of age and calendar time in the same
way. :

The same procedure can be used to separate the effect of age from the
effect of time since entry, although there may not be enough data for some
combinations of age and time since entry to estimate a rate. Figure 6.5
shows the four subjects in the cohort relative to age and time since entry.
Five-year bands have again been chosen for both scales.

Exercise 6.5. Divide the observation time for subject 1 between different com-
binations of five-year bands of age and time since entry.
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Fig. 6.3. Lexis diagram showing age and calendar period.
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Fig. 6.4. TFollow-up of subject 1 by age and calendar time.

6.5 Reference rates by calendar period

Feference rates, used to calculate the expected numbers of failures, usually
come from national rates tabulated by age, sex, and calendar period. In the
UK these are calculated using an approximate figure for the person-years.
For example, the all-cause mortality rate for the age band 50-54 during
1983 is estimated by D/Y where D is the number of deaths during 1983
for which the subject’s age at death was in the range 50-54, and Y is the
person-time lived during 1983 by that part of the population whose ages
were in the range 50-54 during 1983. Since the exact value of Y is not
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Fig. 6.5. Lexis diagram showing age and time since entry.
known an approximate value is obtained from
Y = Population aged 50-54 in mid-1983 x 1 year.
For five-year calendar periods such as 1981-85,
Y ~ Population aged 50-54 in mid-1983 x 5 years.

The population in the different age bands for any year is obtained from
the census; directly for census years and indirectly for inter-census years
by updating the last census by births, deaths, and migration.

Exercise 6.6. The total number of deaths from cancer of the lung in the SW
region of England during the years 1981-88 were males: 14 751, females: 5420.
The 1984 population of the region is estimated to be males: 2154900, females:
2306300. Calculate the mortality rate per 10° person-years for males and females
separately.

When follow-up of a cohort takes place over an extended calendar pe-
riod, the national age-specific rates will usually vary over this period, mak-
ing it difficult to choose a single set of age-specific rates to use for compari-
son purposes. The solution is to compute the expected number of events by
both age and calendar period, using the appropriate national rates for each
calendar time period. To do this the person-years observation in the co-
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Table 6.5. Mortality following X-irradiation

Cause of Number of deaths Ratio
death Observed, D Expected, £ D/E
Cancers:
Leukaemia 31 6.47  4.79
Colon 28 17.30 1.62
Heavily irradiated sites 259 167.50 1.55
Lightly irradiated sites 79 65.65 1.20
All neoplasms 397 256.92 1.55
Other causes 1362 804.68 1.69
All causes 1759 1061.61 1.66

hort study must be partitioned by age and calendar period. The expected
number of failures can then be calculated for each combination of age and
calendar period, as before, by multiplying the person-years observation by
the appropriate national rate. Addition over all combinations of age and
calendar period yields an expected number of cases which takes account of
variation in national rates with both age and calendar time.

An example of this kind of calculation appears in Table 6.5, which
shows some results taken from a study of cancer mortality in a cohort of
ankylosing spondilitis patients who had been treated with a single course
of X-irradiation of the spine.* The follow-up of each patient started in
the year of treatment (1935-1954) and continued until death, migration
or 1970 (the date when this analysis was carried out). Follow-up was also
terminated by a second course of treatment because the aim was to study
the effect of a single course of X-rays and the time before this effect became
apparent. The study was carried out in Great Britain and Northern Ireland,
and the expected numbers of deaths calculated using the national rates for
England and Wales, tabulated by five-year bands for both age and calendar
time. It can be seen that mortality from all causes was higher in this cohort
than in the reference population. Although accounting for relatively few
excess deaths, the ratio of observed to expected deaths was particularly
high for leukaemia. This ratio is an important index in epidemiology and
is called the standardized mortality ratio (SMR). We shall discuss it further
in Chapter 15.

Exercise 6.7. Table 6.6 subdivides the observed and expected deaths from
leukaemia according to time since X-ray treatment. How would this table have
been calculated?

*From Smith, P.G. and Doll, R.(1982) British Medical Journal, 284, 449-460.
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Table 6.6. Leukaemia deaths by time since treatment

Time since treatment (years)
0-2 35 68 011 12-14 15-17 1820 >20

Observed 6 10 6 3 1 4 1 0
Expected 1.00 0.89 0.87 0.90 0.96 0.90 0.55 0.40
Ratio 6.00 11.24 6.90 3.33 1.04 4.44 1.82  0.00

Solutions to the exercises

6.1 The observation times for the four subjects are 9, 7, 16, and 8 years
respectively. 4

6.2 Subject 5 is 22 years of age on joining the cohort and 26 when lost
to follow-up. She contributes 3 years to the band 20-24, and 1 year to the
band 25-29.

6.3 The expected numbers of cases in the five age bands are 1.10, 1.75,
3.26, 5.11, and 5.54. The sum of these values is 16.76, but working to full

‘accuracy we obtain 16.77 for the total expected number of cases.

6.4 The AgexPeriod bands in which subject 2 was observed are as fol-
lows:

Age Calendar period Time in band

20-24 1945-49 ‘ 1
25-29 1945-49 1
25-29 1950-54 4
30-34 1950-54 1

6.5 The AgexFollow-up bands in which subject 1 was observed are as
follows:

Age Follow-up time Time in band

35-39 0-4 1
40-44 0-4 4
40-44 5-9 1
45-49 5-9 3

6.6 The estimated rate for males is

14751

— = 108 person-years
51529008 — 500 per 10° person-y
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and the estimated rate for females is

5420

- 6
2306300 8 — 294 per 10° person-years.

6.7  The follow-up of each subject can be represented by a line on &
three-dimensional Lexis diagram with axes: age, period, and time since
treatment. Age and period were divided into five-year bands and time since
treatment into three-year bands. Observed deaths and person-years can be
assigned to cells in the resulting three-dimensional table. Multiplication
of person-years by national rates gives the expected number of deaths for
each cell. Table 6.6 is formed by adding this table over age and period.
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Competing risks and selection

7.1 Censoring in follow-up studies

Up to this point we have lumped all the different reasons for censoring
together. In this chapter we look at this practice more carefully and make
a distinction between censoring due to practical difficulties in maintaining
follow-up (such as migration, refusal to participate further and so on), and
censoring due to competing causes of failure.

The first class of events causes removal of a subject from observation,
but after censoring the subject is still at risk of failure — a subject does
not cease to run the risk of a myocardial infarction simply because he or
she has ceased to participate in a follow-up study. Such observations are
censored in the sense that this later experience is removed from our view.
The second class of censoring events also causes removal of a subject from
observation, but this time the subject is no longer at risk from the failure of
interest. This is obviously true when a subject dies from a competing cause,
but onset of a non-fatal competing disease can also remove a subject from
the risk under study. For example, in a study of myocardial infarction in
previously healthy subjects, a subject who suffers the onset of lung cancer
would be considered as no longer at risk — although patients with lung
cancer suffer myocardial infarctions quite frequently, the aetiology is so
different as to be regarded as a different type of event.

7.2 Competing causes

The termination of follow-up by a competing cause is not due to imperfec-
tion of any one study, but is intrinsic to all imaginable studies. The binary
model which underlies the measurement of disease frequency by rates and
risks assumes only one type of failure. To allow for more than one type,
the model must be extended. Fig. 7.1 illustrates a model with two causes
of failure over a single study period of fixed duration. There are now three
possible outcomes, labelled F1 and F2 for the two types of failure and S
for survival. The probabilities of F1 and F2 are referred to as w; and 7o,
so the probability of survival is 1 —m — 2. In incidence studies, 7, and
79 Tepresent cause-specific failure probabilities or risks.

It is easy to use likelihood to estimate the parameters and mp. If N
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Fig. 7.1. Two causes of failure

subjects are studied and we observe D; failures of the first type and D,
failures of the second type, the likelihood is

(ﬂ_l)Dl (7T2)D2 (1 — 771 _ 7T2)N_D1_D2

?

and the log likelihood is
* Dylog(m) + D2 log(mg) + (N — Dy — Dy)log(1 — 1y — 72).

This takes its maximum value when 7; = D; /N and 79 = Dy /N so that the
most likely values correspond with the intuitive measures — the proportions
of subjects failing due to each cause.

Exercise 7.1. In a 5-year follow-up study of 1000 subjects, 27 suffered myocar-
dial infarctions during the study period while 8 suffered strokes. (If any subject
suffered both events, only the first was counted.) Estimate the cause-specific risks
for these conditions. If myocardial infarctions and strokes are grouped together
as ‘cardiovascular events’, what is the estimated risk of a cardiovascular event?

Fig. 7.2 illustrates the extension of this model to describe observation
of a subject through several consecutive bands. Superscripts denote band
and subscripts continue to indicate the type of failure. As in the case of a
single cause, the m parameters are defined as conditional probabilities. For
example, 3 represents the probability of failure F1 during the third band,
conditional upon survival through all preceding bands. The log likelihood
behaves as if the time bands form separate studies involving different groups
of subjects, so for each band the cause-specific failure probabilities are
estimated by the proportion of those subjects at risk during the band,
failing from the specified cause.

Exercise 7.2. The conditional probabilities of F1 and F2 remain constant at 0.1
and 0.2 respectively over three bands. List the 7 possible outcomes and calculate
their probabilities.
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Fig. 7.2. Consecutive time bands

Table 7.1. Log likelihood contributions for a subject during one click

Outcome Log likelihood

F1 log A1 + logh
F2 log A2 +logh
S —(A1+ A2)h

7.3 Cause-specific rates

The same argument can be extended to rates by dividing the time st_:a.le
into clicks, Fig. 7.1 now represents the possible outcomes for one subject
during a single click. The conditional failure probabilities are

71 = Aih, T2 = A2h,
where h is the duration of a click and A1 and As are cause-specific ratc?s —
conditional probabilities per unit time. Because the probabilities of failure
are very small, we can make the approximation
log(l —m — 7T2) =M — My = —()\1 + )\z)h,
and the contributions to the log likelihood of a single subject during a
single click are then those shown in Table 7.1. The total log likelihood is

obtained by summing such terms over subjects and over clicks. There are
Dy clicks which result in failure of type F1 and these contribute a total of

D, log(A1) + Dy log(h)
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to the log likelihood. Since the second term does not depend upon pa-
rameters it can be ignored. Similarly the Dy failures of type F2 contribute
Ds log(A2). Because every subject, regardless of eventual outcome, survives
all the clicks save the last, the sum of all of these log likelihood contribu-
tions over both subjects and clicks is

S —(a+ Xk = =1 + A,

where Y is the total person-time of observation of the cohort. The grand
total of all these contributions to the log likelihood is

Dy log(A1) + D2 log(A2) — (A1 + A2)Y.
A minor rearrangement of this expression leads to
Dylog(M) — MY + Dzlog(hz) — ALY

so that the log likelihood is the sum of two parts, both Poisson in form, the
first referring to F1 and the second to F2. The fact that the log likelihood
falls into two distinct parts, one for each cause, justifies the standard prac-
tice of analyzing each cause separately, allowing for competing causes only
in that they curtail further observation. The argument is easily generalized
to allow for more than two causes.

7.4 Interpreting cause-specific rates

There has been some controversy as to whether the practice of estimating
cause-specific rates in this way requires us to assume independence of causes
— an assumption which might often not be justified. In fact, the split of the
log likelihood into a sum of separate parts, one for each cause-specific rate,
does not arise as a result of any assumption of independence of causes,
but out of the way cause-specific rate parameters are defined. The rate
for cause 1 is defined as the probability per unit time of failure due to
cause 1, conditional upon the subject having previously survived all causes
of failure. This quantity is not truly specific to one cause. Influences which
directly influence one cause can, because of this, have an indirect affect on
rates for another cause. The term cause-specific is misleading. For exam-
ple, it is likely that myocardial infarction and stroke compete for the same
high risk subgroup of the population: those with advanced atherosclerosis.
A preventive measure which reduced the incidence rate of myocardial in-
farction without reducing the prevalence of atherosclerosis would result in
an increase in the rate of stroke, since more of the atherosclerotic group
would survive to be at risk from stroke.
It is a common practice to apply the formula,

log(Cumulative survival probability) = —Cumulative rate.
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Fig. 7.3. Elimination of cause F2

to the cumulative cause-specific rate to calculate a cause-specific survival
probability, interpreted as the probability of survival which would be ob-
served if all other causes of failure were eliminated. However, this interpre-
tation does depend on the assumption that the different causes.of failure
are independent. This is illustrated in Fig. 7.3. If the causes are inde-
pendent, subjects who would have failed failed due to F2 have exactly the
same conditional probabilities of failure due to F1 as those who would
not. Under these circumstances, elimination of cause F2 will have no ef-
fect on the subsequent rate for F1, and the exponential function of minus
the cumulative cause-specific rate for F1 can be interpretated as a survival
probability when cause F2 is eliminated. More generally we might expect
elimination of other causes to have an effect on the rate for the remaining
one and the cumulative cause-specific rate will then have no such inter-
pretation. Since the independence of different causes is usually untestable,
it is best to avoid such interpretations and to leave estimates of cumu-
lative cause-specific failure rates, calculated by the modified life table or
Aalen—Nelson method, without converting them to cumulative probabili-
ties of survival. Conversely, if the actuarial life table and Kaplan—-Meier
methods of Chapter 4 are applied to cause-specific failure probabilities, the
resulting ‘survival probability’ should™»e transformed to a cumulative rate
by taking minus its logarithm.

7.5 Selection bias Vs

'//
We now turn to the other reasons for censoring in follow-up studies. The
statistical theory is exactly the same as for competing causes — we simply
relabel the two causes as failure and loss to follow-up (Fig. 7.4). However,
the question of dependence between failure and censoring takes on a new
significance, because censoring arises as a result of the imperfection of
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Fig. 7.4. Loss to follow-up

real studies, rather than unavoidable biological realities. We would like to
estimate what would have happened in an ideal study in which no censoring
occurred, but in order to do this we need to assume that censoring and
failure are independent. More precisely, this means that that those lost
to follow-up due to censoring must have the same probabilities of failure
in later bands as those remaining under observation. If this is the case,
censoring is said to be non-informative. If not, the study results will be
subject to selection bias.

A well known example of selection bias due to censoring arises in clinical
trials when patients become so ill that their clinicians are unable ethically
to maintain them on a randomized double blind protocol. The randomiza-
tion code is then broken and the clinician is free to modify the treatment
as necessary. If observation of such patients is regarded as censored at
this point, the analysis is seriously biased, because these patients have a
worse prognosis than those remaining in the trial. It will almost always be
preferable to continue the follow-up of these patients and to analyze the
data according to the initial treatment assigned. This is known as analysis
by intention to treat.

Similar considerations apply when there is late entry to follow-up stud-
ies. Ideally, subjects should be recruited at the starting point for the failure
process under study. This is usually the case in clinical epidemiology, where
patients are recruited into the study at diagnosis, the natural starting point
for a prognostic study. In many epidemiological studies, however, subjects
are recruited some time after the natural starting point (see Fig. 7.5) This

is known as late entry; it can introduce further selection bias if the new sub- -

jects have different subsequent probabilities of failure from the survivors
they- join. For example, clinical follow-up studies are frequently carried
out in cohorts initially recruited from patients under treatment in a group
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Fig. 7.5. Selection due to loss and late entry

of participating hospitals when the study starts. These cohorts are then
extended by addition of new patients as they are diagnosed. When carry-
ing out analyses of survival times from diagnosis, the initial members of
such a cohort are late entries, because their diagnosis preceded their entry
into the study. This introduces possibilities for selection bias, because the
initia] cohort could include patients diagnosed elsewhere, but would omit
patients diagnosed in the participating hospitals and referred elsewhere for
treatment.

In epidemiological studies of the causes of disease, late entry is almost
universal and we must be careful that it does not introduce bias. An ex-
ample of bias arising this way is the healthy worker effect, so called because
of the widespread empirical finding that occupationally recruited cohorts
have lower mortality than general population rates would suggest. This
arises partly because of selective recruitment into occupations but mainly
because early retirement and job changes in response to ill health act to
prevent entry of ‘unhealthy’ workers into the cohort. The ideal study would
recruit subjects on entry to the occupation, but in practice the subjects ac-
tually recruited are those in employment on a particular date. Follow-up
then starts on that date. Factors such as early retirement, and job changes
in response to ill health, can operate in the period between joining the
occupation and recruitment to prevent entry of unhealthy workers into the
cohort.

The phenomenon of late entry is closely related to the distinction some-
times ddewn between ‘closed’ cohorts (in which only failures and censoring
can occur) and ‘dynamic’ cohorts, which can be refreshed by new entrants.
This distinction implies that being closed or dynamic is a property of the
cohort, but this is incorrect. The occurrence or non-occurrence of late entry
is not a property of the cohort, but depends on the time scale chosen for
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analysis. If survival is analyzed by time in study there are no late entries,
but in an analysis of the same study by age, or by time since entering an
occupation, there will be late entries.

Sclutions to the exercises =

7.1  The estimated 5-year risk of myocardial infarction is 27/1000 while

that for stroke is 8/1000. The risk of a cardiovascular event is 35/1000.

7.2  The outcomes and their probabilities are listed below.

Outcome Probability
Band 1
F1 0.1
F2 0.2
Band 2 .
F1 ' 0.7 x 0.1 = 0.07
F2 0.7x0.2=0.14
Band 3

F1 0.7 x 0.7 x 0.1 = 0.049
F2 0.7 x 0.7 x 0.2 = 0.098
S 0.7 x 0.7 x 0.7 =0.343
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The Gaussian probability model

Until now we have been concerned only with the binary probability model.
In this model there are two possible outcomes and the total probability of
1 is shared -between them. It is an appropriate model when studying the
occurrence of events, but not when studying a response for which there are
many possible outcomes, such as blood pressure. For this the Gaussian or
normal probability mode] is most commonly used.

In the Gaussian model the total probability of 1 is shared between many
values. This is illustrated in the left panel of Fig. 8.1. When measurements
are recorded to a fixed number of decimal places, there is a finite number
of possible outcomes but, in principle, such measurements have infinitely
many possible outcomes, so the probability attached to any one is effec-
tively zero. For this reason it is the probability density per unit value which
is specified by the model, not the probability of a given value. This is illus-
trated in the right panel of the figure. If 7 is the probability shared between
values in a very narrow range, width h units, the probability density is 7 /h.

8.1 The standard Gaussian distribution

The standard Gaussian distribution has probability density centred at 0.
The probability density at any value z (positive or negative) is given by

0.3989 exp [—%(z)z] .

A graph of this probability density for different values of z is shown in
Fig. 8.2. There is very little probability outside the range £3.

Tables of the standard Gaussian distribution are widely available, and
these readily allow calculation of the probability associated with specified
ranges of z. For our purposes it is necessary only to record that the proba-
bility corresponding to the range (—1.645 +1.645) is 0.90 and that for the
range (—1.960, +1.960) is 0.95.

If the probability model for 2 is a standard Gaussian distribution then
the probability model for (2)? is called the chi-squared distribution on one
degree of freedom. Tables of chi-squared distributions can be used to find
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the probabilities of exceeding specified values of (2)? in the same way as
t tables of the standard Gaussian distribution are used to find probabilities

Blood pressure of exceeding specified values of z.

200 Exercise 8.1. Use the tables in Appendix D to find the probability of exceeding

L the value 2.706 in a chi-squared distribution on one degree of freedom.

L 180 i ' : Note that, for (2)? to exceed 2.706, z must lie outside the range +1.645 of
h the standard normal distribution.

L 160 8.2 The general Gaussian model

It would be remarkable if the data we are analysing fell into the range
—3 to +3, so for modelling the variability of real data, it is necessary to
140 generalize the model to incorporate two parameters, one for the central
value or location, and one for the spread or scale of the distribution. These
: are called the mean parameter and standard deviation parameter and are
120 usually denoted by 1 and o respectively. A variable with such a distribution
is derived by multiplying z by the scale factor and adding the location
parameter. Thus

-100 ’ z=p+oz.

Fig. 8.1. Probability shared between many outcomes. » has a distribution of the same general shape as the standard Gaussian
distribution but centred around p with most of its probability between
#— 30 and p + 30.

Exercise 8.2. If the mean and standard deviation of a general Gaussian distribu-
tion are 100 and 20 respectively, what ranges of values correspond to probabilities
) of 0.90 and 0.95 respectively?

Similarly, when z has a Gaussian distribution with mean p and standard

deviation ¢ then
zZ =
ol

will have a standard Gaussian distribution. This fact can be used get the
probability for a range of values of z using tables of 2.

{ The probability density per unit of z when z has a Gaussian distribution
with mean p and standard deviation o is

' 03989 | 1(z—p 2
4 ; o P 2 4 ’

This expression is obtained by substituting (z — p)/o for z in the proba-
bility density of a standard Gaussian distribution to obtain the probability
- density per ¢ units of z, and then dividing by ¢ to obtain the probability
Fig. 8.2. The standard Gaussian distribution. : density per unit of z. Sometimes the distribution is described in terms of

the square of o, which is called the variance.
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Fig. 8.3. The log likelihood ratio for the Gaussian mean, u.

8.3 The Gaussian likelihood

Suppose a single value of z, say £ = 125 is observed. Using the probability
mode] that this is an observation from a Gaussian distribution with pa-
rameters p and o, the log likelihood for i and o is given by the log of the
corresponding Gaussian probability density:

2

1 /125 —
log(0.3989) — log(o) — = ( #> .

2 g
This log likelihood depends on two unknown paralneteré, but to keep things
simple we shall assume that one of them, ¢, is known from past experience
to have the value 10. Omitting constant terms, the log likelihood for p is

then ,

1125 -p\?
2\ 10 ‘

The most likely value of u is 125 and, since the above expression is zero at
this point, this expression also gives the log likelihood ratio for g. This is
plotted in Fig. 8.3; curves with this shape are called quadratic.

We saw in Chapter 3 that we take the extremes of the supported range
for a parameter to correspond to the value—1.353 for the log likelihood
ratio. To find the limits of the supported range for i we must therefore
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solve the simple equation

2
1 (125 - ”) — _1.353.

2 10

This takes only a few lines:

125 — p\?
( - ) = 2.706,

125 —p
10

L

+1.645,

125 + 1.645 x 10,

so that supported values of y are those between 108.6 and 141.5. In general,
the log likelihood ratio for y is

RYCLTAY
2 o ’
the most likely value of p is the observation z, and the supported range for
L is

z + 1.6450,

where ¢ is the standard deviation (which we assume to be known).

We saw in Exercise 8.1 that the probability of exceeding 2.706 in a
chi-squared distribution is-0.10, and the probability corresponding to the
range +1.645 in the standard Gaussian distribution is 0.90. The fact that
these numbers turn up in the above calculation is no accident and suggests
that the log likelihood ratio criterion of —1.353 leads to supported ranges
which have something to do with a probability of 0.90. This is indeed the
case, but the relationship is not altogether straightforward and we shall
defer this discussion to Chapter 10.

8.4 The likelihood with N observations

When there are N observations
Z1,Z2,..-,TN,

the log likelihood for p is obtained by adding the separate log likelihoods
for each observation giving

Z‘% (mi;uy
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Let M refer to the mean of the observations,

T+ 22+ TN
< .

It can be shown that the log likelihood can be rearranged as
1/ M—pu 2 1 (x;— M 2
3 (52) 2 (53
where § = 0/v/N, sometimes called the standard error of the mean. This
rearrangement involves only elementary algebra and the details are omitted.

The second part of this new expression for the log likelihood does not
depend on g and cancels in the log likelihood ratio for p which is

L (Mo’
2 S !
The most likely value of u is M, and setting the log likélihood ratio equal
to —1.353 to obtain a supported range for u gives

M =

=M £ 1.6458S.
As we would expect, with larger N, the value of S becomes smaller and
the supported range narrower.
Exercise 8.3. The following measurements of systolic blood pressure were ob-

tained from a sample of 20 men.

98 160 136 128 130 114 123 134 128 107
123 125 129 132 154 115 126 132 136 130

What is the most likely value for 4? Assuming that o = 14, calculate the range
of supported values for u.

This exercise continues to make the unrealistic assumption, made through-
out this chapter, that o is known. In practice it must almost invariably be
estimated from the data. We shall defer discussion of this until Chapter 34.

Solutions to the exercises

8.1 The probability of exceeding 2.706 in the chi-squared distribution
with one degree of freedom is 0.10.

8.2 The range corresponding to a probability of 0.9 is

100 + 1.645 x 20 = (67.1,132.9)
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and, for a probability of 0.95,

100 £ 1.96 x 20 = (60.8,139.2).

8.3 The mean of the 20 measurements is 128.00 and this is the most
likely value of p. To calculate the supported range for p, we first calculate

14

S = =3.13

g
8]

so that the range lies between
= 128.00 + 1.645 x 3.13

that is from 122.9 to 133.1 .
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Approximate likelihoods

Because the Gaussian log likelihood for the mean parameter, y, takes the
simple form
_L(M-py
2 S

the supported range for y also takes a simple form, namely

M +1.6458.

For log likelihoods_such as the Bernouilli and Poisson there is no simple
algebraic expression for the supported range, and the values of the pa-
rameters at which the log likelihood is exactly —1.353 must be found by
systematic trial and error. However, the shapes of these log likelihoods
are approzximately quadratic, and this fact can be used to derive simple
formulae for approximate supported ranges. Methods based on quadratic
approximation of the log likelihood are particularly important because the
quadratic approximation becomes closer to the true log likelihood as the
amount of data increases.

9.1 Approximating the log likelihood

Consider a general likelihood for the parameter, 8, of a probability model
and let M be the most likely value of 6. Since the quadratic expression

1/ M—-06\°

(%57
has a maximum value of zero when § = M it can be used to to approximate
the true log likelihood ratio, after an appropriate value of S has been
chosen. Small values of S give quadratic curves with sharp peaks and
large values of S give quadratic curves with broad peaks. We shall refer

to S as the standard deviation of the estimate of §. Alternatively, it is
sometimes called the standard error of the estimate.

A
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Once M has been found and S chosen, an approximate supported range
for 6 is found by solving the equation

1/M-6\2
-3 (T) = —1.353,

to give
0 =M £+1.64585.

Full details of how S is chosen are given later in the chapter, but for the
moment we shall give formulae for S, without justification, and concentrate
on how to use these in practice.

THE RISK PARAMETER

The log likelihood for 7, the probability of failure, based on D failures and
N — D survivors is

Dlog(r) + (N — D) log(1 — 7).

The most likely value of 7 is D/N. To link with tradition we shall also
refer to the most likely value of 7 as P (for proportion). The value of S
which gives the best approximation to the log likelihood ratio is

5=y 2020

For the example we worked through in Chapter 3, D =4 and N = 10 so
that the value of P is 0.4 and

10.4x0.6
S = 0 - 0.1549.

An approximate supported range for 7 is given by
0.4+ 1.645 x 0.1549

which is from 0.15 to 0.65, while the supported range obtained from the
true curve lies from 0.17 to 0.65. The true and approximate log likelihood
curves are shown in Fig. 9.1. The curve shown as a solid line is the true
log likelihood ratio curve, while the broken line indicates the Gaussian
approximation.

THE RATE PARAMETER
The log likelihood for a rate A based on D cases and Y pérson years is

Dlog()) — \Y.
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Fig. 9.1. True and approximate Bernouilli log likelihoods.

The most likely value of A is D/Y and the value of S which gives the best
approximation to the log likelihood ratio is

For the example in Chapter 5, D =7 and Y = 500. The most likely value
of A is 0.014 and .
8 = +/7/500 = 0.00529.

An approximate supported range for A is therefore
0.014 + 1.645 x 0.00529

which is from 5.3/1000 to 22.7/1000. The true (solid line) and approximate
(broken line) log likelihood ratio curves are shown in Fig. 9.2. The range
of support obtained from the true curve spans from 7.0 to 24.6 per 1000.

Exercise 9.1. Find the approximate supported range for w, the probability of
failure, based 7 failures and 93 survivors. Find also the approximate supported
range for A, the rate of failure, based on 30 failures over 1018 person-years.

9.2 Transforming the parameter

The Gaussian log likelihood curve for p is symmetric about M and extends
indefinitely to either side. However, the parameters of some probability

~—
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Fig. 9.2. True and approximate Poisson log likelihoods.

models are not free to vary in this manner. For example, the rate parameter
A can take only positive values, and the risk parameter must lie between 0
and 1. Approximate supported ranges for such parameters calculated from
the Gaussian approximation can, therefore, include impossible values.
The solution to this problem is to find some function (or transformation)
of the parameter which is unrestricted and to first find an approximate
supported range for the transformed parameter. '

THE LOG RATE PARAMETER

The rate parameter A can take only positive values, but its logarithm is
unrestricted. To calculate an approximate supported range for A it is bet-
ter, therefore, to first calculate a range for log(\), and then to convert this
back to a range for A. Note that the range for log(\) will always convert
back to positive values for A. To find the approximate range for log(A) we
need a new value of S — that which gives the best Gaussian approximation
to the log likelihood ratio curve when plotted against log(A). When a rate
A is estimated from D failures over Y person-years, this value of S is given

by

S =+/1/D.
Fig. 9.3 illustrates this new approximation for our example in which D =7
and Y = 500 person-years. Here,

S =+/1/7 = 0.3780,
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Fig. 9.3. Approximating the log likelihood for log(}).
and an approximate supported range for log()) is

log(7/500) & 1.645 x /1/7,

which is from —4.890 to —8.647. The range for ) is therefore from exp(—4.890)

to exp(—3.647) which spans from 7.5/1000 to 26.1/1000.
A more convenient way of carrying out this calculation is suggested by
noting that the limits of the range for A are given by

7 x 1 x
Lz 1.6454/= ) = 0.014 = 1.862.
500 ~ P < \/;>

The range is then from 0.014/1.862 = 7.5/1000 to 0.014 x1.862 = 26.1/1000,
as before. We shall refer to the quantity

exp (1.6455)

as an error factor.

'THE LOG ODDS PARAMETER

The same thing can be done when calculating a supported range for the risk
parameter 7 based on D failures in N subjects. The value of 7 is restricted
on both sides, by 0 on the left and by 1 on the right. The value of log(~) is
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still restricted on the right by zero because log(1) = 0, but log(f2), where
(1 is the odds corresponding to , is not restricted at all. Hence we first
find a range for log(Q2) and then convert this back to a range for 7. The
most likely value of log(Q) is

M=log(Nl_)D)

and the value of S for approximating the log likelihood for log(f) is

1 1
§= 5+'N—D'

For the example where D =4 and N -D =6

S = + % = 0.6455,

PN

and an approximate supported range for log({2) is given by
4
log g +1.645 x 0.6455,

that is, from —1.4673 to 0.6564. This is a range for log((?) and it is equiv-
alent to a range for  from exp(—1.4673) = 0.231 to exp(0.6564) = 1.928.
This can be calculated more easily by first calculating the error factor

exp (1.645 x 0.6455) = 2.892.
The most likely value of 2 is 4/6 = 0.667, so that the supported range for
Qis
X
0.667 + 2.892

that is, from 0.231 to 1.928 as before. Finally, remembering that = =
Q/(1 + ), the range for 7 is given by

0.231 1.928

— o ——

1.231 2.928

which is from 0.19 to 0.66.
Some of the more commonly used values of S obtained by approximating
the log likelihood are gathered together in Table 9.1.

Exercise 9.2. Repeat Exercise 9.1 by first finding 90% intervals for log(Q2) and
log()) respectively, and then converting these to intervals for 7 and A.

Exercise 9.3. Repeat the above exercise using error factors.
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Table 9.1. Some important Gaussian approximations

Parameter M S

T D/N=P v/ P(1-P)/N

A D/Y vD/Y
log(2) loglD/(N - D)] +/1/D+1/(N-D)
log()\) log(D/Y) £/1/D

9.3 Finding the best quadratic approximation

We now return to the problem of how to determine the values for M and
S. To do this we need some elementary ideas of calculus summarized
in Appendix B. In particular, we need to be able to find the gradient
(or slope) of the log-likelihood curve together with its curvature, which is
defined as the rate of change of the gradient. The mathematical terms for
these quantities are the first and second derivatives of the log likelihood
function. '

The value of M can be found by a direct search for that value of of 6
which maximizes the log likelihood, but it is often easier to find the value
of 8 for which the gradient of the log likelihood is zero; this occurs when
f=M. '

The value of S is chosen to make the curvature of the quadratic approx-
imation equal to that of the true log likelihood curve at M, thus ensuring
that the true and approximate log likelihoods are very close to each other
near § = M. The quadratic approximation to the log likelihood ratio is

1(/M-6\°

2 S ’
and the rules summarized in Appendix B show that the curvature of this
is constant and takes the value

[GR

We therefore choose the value of S to make —1/ (5)? equal to the curvature
of the true log likelihood curve at its peak.

THE RATE PARAMETER
The log likelihood for a rate A is

Dlog()) — AY.
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Using the rules of calculus given in Appendix B the gradient of log(}) is
1/X and the gradient of X is 1. Hence the gradient of the log likelihood is

D
X_Y'

The maximum value of the log likelihood occurs when the gradient is zero,
that is, when A = D/Y’, so the most likely value of A\ is D/Y. The curvature
of a graph at a point is defined as the rate of change of the gradient of the
curve at that point. The rules of calculus show this to be '

D
—W'

The peak of the log likelihood occurs at A = D/Y so the curvature at the
peak is found by replacing A by D/Y in this expression to obtain

)
D

Setting this equal to —1/(5)? gives
s =+D/Y,
which is the formula quoted earlier.

THE RISK PARAMETER

The log likelihood for the probability 7= based on D positive subjects out
of a total of N is

Dlog(r) + (N — D) log(1 — ).
The gradient of the log likelihood is

B_N—D
T l—nm

which is zero at # = D/N, also referred to as P. The gradient of the
gradient is

_D _N-D
(m? (1-m*
so the curvature at # = P is
D —D
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Replacing D by NP and N — D by N(1 — P), this reduces to

N
" P(1-P)

5=y 2B

9.4 Approximate likelihoods for transformed parameters

SO

When the log likelihood for a parameter is plotted against the log of the
parameter rather than the parameter itself, the curvature at the peak will
be different. For example, the log likelihood for a rate parameter A is

Dlog()) — \Y.

Plotting this against log()) is the same as expressing the log likelihood as
a function of log(A). To do this we introduce a new symbol 3 to stand for
log(A), so

B=log(}), A=exp(f).

In terms of § the log likelihood is
D3 — Y exp(0).
The gradient of this with respect to 3 is

D —Y exp(B)

and the curvature is
—Y exp(f).

The most likely value of exp(8) (which equals A) is D/Y’, so the curvature

at the peak is
-Y x (D/Y) = -D.

It follows that

S =+/1/D.

In general, derivations such as that above can be simplified considerably
by using some further elementary calculus which provides a general rule for

" the relationship between the values of S on the two scales. In the case of

the log transformation, this rule states that multiplying the value of S on
the scale of A by the gradient of log(\) at A = M gives the value of S on the
scale of log(A). The rules of calculus tell us that, at A = M, the gradient

SOLUTIONS o

of the graph of log()\) against ) is 1/M. Since, on the X scale, M = D)y
and S =+/D/Y, the rule tells us that the value of S for log()) is

VD ¥ _ [T
vy "D VD
This agrees with the expression obtained by the longer method.

. A similar calculation shows that the curvature of the Bernouilli log
likelihood, when plotted against log(©2), the log odds, is given by

Solutions to the exercises

9.1  An approximate supported range for 7 is given by

\

0.07 + 1.6458

where S = 1/0.07 x 0.93/100. This-gives a range from 0.028 to 0.112.
An approximate supported range for ) is given by

30/1018 +1.64585

where § = +/30/1018. This gives a range from 21/1000 to 38/1000.

9.2 The approximate supported range for log(f?) is given by

log(7/93) + 1.6455

S—,/5+ 1 =0.3919
V7 Tog T T

This gives a range from —3.231 to —1.942. The range for Q is from 0.040
to 0.143, and the range for = is from 0.038 to 0.125.
The approximate supported range for log()) is given by

where

log(30/1018) + 1.6455

where :
S =+/1/30 = 0.1826.

This gives a range from —3.825 to —3.224. The range for A is from 22/1000
to 40/1000.
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9.3  The error factor for Q is
exp(1.645 x 0.3919) = 1.905.

The most likely value for Q is 7/93 = 0.075 and the range for 2 is from . .
0.075/1.905 = 0.040 to 0.075 x 1.905 = 0.143. The range for = is from

0.038 to 0.125.
The error factor for the rate is

exp(1.645 x 0.1826) = 1.350.

The most likely value of the rate is 29/1000 with range from 29/1.350 = 22
per 1000 to 29 x 1.350 = 40 per 1000.
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Likelihood, probability, and
confidence

=

The supported range for a parameter has so far been defined in terms of
the cut-point —1.353 for the log likelihood ratio. Some have argued that
the scientific community should accept the use of the log likelihood ratio
to measure support as aziomatic, and that supported ranges should be re-
ported as 1.353 unit supported ranges, or 2 unit supported ranges, with the
choice of how many units of support left to the investigator. This notion
has not met with widespread acceptance because of the lack of any intu-
itive feeling for the log likelihood ratio scale — it seems hard to justify the
suggestion that a log likelihood ratio of —1 indicates that a value is sup-
ported while a log likelihood ratio of —2 indicates lack of support. Instead
it is more generally felt that the reported plausible range of parameter val-
ues should be associated in some way with a probability. In this chapter
we shall attempt to do this, and in the process we shall finally show why
—1.353 was chosen as the cut-point in terms of the log likelihood ratio.

There are two radically different approaches to associating a probability
with a range of parameter values, reflecting a deep philosophical division
amongst mathematicians and scientists about the nature of probability. We
shall start with the more orthodox view within biomedical science.

10.1 Coverage probability and confidence intervals

Our first argument is based on the frequentist interpretation of probability
in terms of relative frequency of different outcomes in a very large number
of repeated “experiments”. With this viewpoint the statement that there
is a probability of 0.9 that the parameter lies in a stated range does not
make sense; there can only be one correct value of the parameter and
it will either lie within the stated range or not, as the case my be. To
associate a probability with the supported range we must imagine a very
large number of repetitions of the study, and assume that the scientist
would calculate the supported range in exactly the same way each time.
Some of these ranges will include the true parameter value and some will
not. The relative frequency with which the ranges include the true value
is called the coverage probability for the range, although strictly speaking
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it is the coverage probability for the method of choosing the range.

‘We shall start with Gaussian probability model and consider the es-
timation of the mean p, from a single observation z, when the standard
deviation, o, is known. The log likelihood ratio for u is

_L(z=n\
2 o
We saw in Chapter 8 that the range of values for u with log likelihood
ratios above the cut-point of —1.353 is

z % 1.6450.

We shall now show that the coverage probability of this range is 0.90 by
imagining an endless series of repetitions of the study with the value of 1
remaining unchanged at the true value. Each study will yield a different
observation, X, and hence a different range (see Fig. 10.1). The range for
any particular repetition will contain the true value of & provided the true
value is judged to be supported by the data X — in other words, provided
that '

2
L (-)-(;—‘i> > —1.353,
2 o

where u now refers to the true value. Writing

(%)
z =
o
this condition is equivalent to (2)? being less than 2.706, and since (2)2

has a chi-squared distribution this occurs with probability 0.90. Hence the
coverage probability is 0.90.

Exercise 10.1. In a computer simulation of repetitions of a study in which
a single observation is made from a Gaussian distribution with 4 = 100 and
¢ = 10, the first four repetitions produced the observations 104, 115, 82, and 92.
Calculate the log likelihood ratio for ¢ = 100 for each of these four observations.
In which repetitions would the true value of x4 have been supported?

The idea of coverage probability has allowed us to attach a frequentist
probability, such as 0.90, to a range of parameter values, but we cannot
say that the probability of the true value lying within the stated range
is 0.90, because the stated range either does or does not include the ttue
value. To avoid having to say precisely what is meant every time the
probability for a range is reported, statisticians took refuge in an alternative
word and professed themselves 90% confident that the true value lies in the
reported interval. Not surprisingly the distinction between probability and
confidence is rarely appreciated by scientists.

CONFIDENCE INTERVALS 91

3

®

[ ]

Fig. 10.1. Repeated studies and their supported ranges.

Exercise 10.2. Use tables of the chi-squared distribution to work out the cut-
point for-the log likelihood ratio which leads to a 95% coverage probability for
the corresponding supported range, and give the formula for this range.

We have demonstrated the correspondence between the —1.353 cut-
point for the log likelihood ratio and 90% coverage, but only for the case
of the Gaussien log likelihood where the standard deviation is known. For-
tunately the relationship also holds approximately for other log likelihoods
such as the Bernoulli and Poisson. With increasing amounts of data these
log likelihoods approach the quadratic shape of the Gaussian log likeli-
hood 4nd the coverage probability for the supported range based on the
—1.353 cut-point is approximately 90%. In other words, if M is the most
likely value of a parameter and S is the standard deviation of the Gaussian
approximation to the likelihood, then the supported range

M +1.6458

is also, at least approximately, a 90% confidence interval.

+ This raises the question of how much data is needed to use this approx-
imate theory. For the Bernoulli likelihood, a reasonable guide is that the
approximations are good if both D and N — D are larger than 10, but can
be misleading if either count is less than 5. In the Poisson case the observed
pumber of events, D, should be largéx_than 10; there is no restriction on
the number of person-years since this is“relevant to the shape of the log
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likelihood curve. In Chapter 12 we discuss what to do when there are too
few data to use the approximate theory.

The only likelihood for which the relationship between the supported
range and the 90% confidence interval holds ezactly is Gaussian likelihood,
and even here we have made the assumption that the parameter ¢ is known.
In the early years of this century it was shown that the practice of estimat-
ing the standard deviation using the data and thereafter pretending that
this estimate is the true value, leads to intervals with approzimately the
correct coverage probability, providing N is large enough (more than 15).

The intervals we have chosen to present correspond to 90% confidence
intervals but 95% intervals are more usually reported in the scientific litera-
ture. The routine use of 90% intervals in the epidemiological literature has
recently been proposed on'the grounds that they give a better impression
of the range of plausible values. If you prefer 95% intervals these can be
obtained by replacing 1.645 by 1.960 in the calculations.

10.2 Subjective probability

The second approach to the problem of assigning a probability to a range of
values for a parameter is based on the philosophical position that probabil-
ity is a subjective measure of ignorance. The investigator uses probability
as a measure of subjective degree of belief in the different values which the
parameter might take. With this view it is perfectly logical to say that
there is a probability of 0.9 that the parameter lies within a stated range.

Before observing the data, the investigator will have certain beliefs
about the parameter value and these can be measured by a priori prob-
abilities. Because they are subjective every scientist would be permitted
to give different probabilities to different parameter values. However, the
idea of scientific objectivity is not completely rejected. In this approach
objectivity lies in the rule used to modify the a priori probabilities in the
light of the data from the study. This is Bayes’ rule and statisticians who
take this philosophical position call themselves Bayesians.

Bayes’ rule was described in Chapter 2, where it was used to calcu-
late the probabilities of exposure given outcome from the probabilities of
outcome given exposure. Once we are prepared to assign probabilities to
parameter values, Bayes’ rule can be used to calculate the probability of
each value of a parameter (0) given the data, from the probability of the
data given the value of the parameter.

_The argument is illustrated by two tree diagrams. Fig. 10.2 illustrates
the direction in which probabilities are specified in the statistical model
— given the choice of the value of the parameter, #, the model tells us
the probability of the data. The probability of any particular combination
of data and parameter value is then the product of the probability of the
parameter value and the probability of data given the parameter value. In
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Parameter
value - Data

©)

Pr(9) Pr(Datal6)

Fig. 10.2. From parameter value to data.

Parameter
Data value
6)
Pr(Data) Pr(g|Data)
Fig. 10.3. From data to parameter value.

this product, the first term, Pr(6), represents the a priori degree of belief for
the value of 6 and the second term, Pr(Data|6), is the likelihood. Fig. 10.3
reverses the conditioning argument, and expresses the joint probability
as the product of the overall probability of the data multiplied by the
probability of the parameter given the data. This latter term, Pr(#{Data),
represents the posterior degree of belief in the parameter value once the
data have been observed. Since the joint probability of data and parameter
value is the same no matter which way we argue,

Pr(6) x Pr(Data|@) = Pr(Data) x Pr(f|Data),
so that Pr(6) x Pr(Datal9)
Pr(Data) )

Thus elementary probability theory tells us how prior beliefs about the
value of a parameter should be modified after the observation of data.

We shall now apply this idea to the problem of estimating the Gaussian
mean, u, given a single observation x. The likelihood for p is

w[3(22)]

Pr(f|Data) =
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If prior to observing x we believe that no value of 4 is any more probable
than any other, then the prior probability density does not vary with p and
the posterior probability density is proportional to the likelihood. Writing

the likelihood as
1/ p—z 2
exp [—5 ( po ) J .

we see that after choosing the constant of proportionality to make the
total probability for x equal to 1, the posterior distribution for uis a
saussian distribution which has mean z and standard deviation . The 5
and 95 percentiles of the standard Gaussian distribution are —1.645 and
1.645 respectively so there is a 90% probability that u lies in the range
x £ 1.6450. This range is called a 90% credible interval.

When the quadratic approximation

1/ M-6\°
2 <T>
is used for likelihoods such as the Bernoulli and Poisson, a similar argu-
ment shows that, provided the prior probability density for 6 does not vary
vp/t,l;\@/, then the posterior distributiofi ToF &~ is “approximately Gaussian
with mean M and standard deviation S. It follows that there is a 90%
probability that 6 lies in the range M =+ 1.645S.

It appears from this discussion that the frequentists and the Bayesians
end up making very similar statements, differing only in their use of the
words confidence and probability. But to achieve this agreement we have
had to make the rathe tion that @ priori no one value
of the parameter is moré probable than any other. This is taking open

indedness too far and Bayesians would generally advocate the use of more
fealistic priors. When there is a large amount of data the posterior is more
influenced by the likelihood than by the prior, and both approaches lead to
similar answers regardless of the choice of prior. However, when the data,
are sparse, there can be serious differences between the two approaches.
Weshall return to this in Chapter 12.

Solutions to the exercises

10.1 When z = 104, the log likelihood ratio for p = 100 is

1 /104 — 100\ 2
-3 (T) = —0.08.

‘For z = 115, 82,92 the log likelihood ratio turns out to be —1.125, —1.62,

and —0.32 respectively. Thus only for = 82 is the support for the true
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value of x less than the cut-off value of —1.353. In all other repetitions
1 = 100 is supported.

10.2 From tables of chi-squared, the value 3.841 is exceeded with proba-

bility 0.05, so 5
(I — K ) > 3.841
g

with probability 0.05. The log likelihood ratio, which is minus one half of
this quantity, is therefore less than

—0.5 x 3.841 = —1.921

with probability 0.05. Thus the cut-point for the log likelihood ratio is
—1.921.
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Null hypotheses and p-values

11.1 The null value of a parameter

With most probability models there is one particular value of the parame-
ter which corresponds to there being no effect. This value is called the null
value, or null hypothesis. For a parameter 8 we will denote this null value
by 6,. In classical statistical theory, considerable emphasis is placed on
the need to disprove (or reject) the null hypothesis before claiming positive
findings, and the procedures which are used to this end are called statisti-
cal significance tests. However, the emphasis in this theory on accepting or
rejecting null hypotheses has led to widespread misunderstanding and mis-

reporting in the medical research literature. In epidemiology, which is not ~

We usefulness of the idea has been particularly
questioned. Undoubtedly the idea of statistical significance testing has
been overused, at the expense of the more useful procedures for estimation
of parameters which we have discussed in previous chapters. However, it
remains useful. A null hypotheses is a wMthesis and measur-
ing the extent to which the data are in conflict with it remains a valuable
part of scientific reasoning. In recent years there has been a trend away
from a making a straight choice between accepting or rejecting the null
hypothesis. Instead, the degree of support for the null hypothesis is mea-
sured, for example using the log likelihood ratio at the null value of the
parameter.

' EXAM?LE: GENETIC LINKAGE BY THE SIB PAIR METHOD

We shall illustrate the methods of this chapter with a simple statistical
problem arising in the detection of linkage between a genetic marker and a
gene which carries an increased susceptibility to a disease. At the marker
locus each offspring receives one of two possible haplotypes from the mother
and one of two possible haplotypes from the father. If there are many pos-
sible haplotypes we can safely assume that the mother and father together
have four different marker haplotypes. The marker is then said to be highly
polymorphic. If the mother has haplotypes (a,b) and the father (c,d), possi-
ble haplotype configurations for offspring are (a,c), (a,d), (b,c), and (b,d).
If inheritance of the marker obeys Mendelian laws, the probability that

THE NULL VALUE OF A PARAMETER 97

Table 11.1. Linkage of the HLA locus to nasopharyngeal cancer suscep-
tibility

Haplotypes Number of Probability

shared sib pairs  (null value)
2 16 0.25
1 8 0.50
0 3 0.25

two siblings have completely different marker haplotypes {no haplotypes in
common) is 0.25 and the probability that they have the same pair of haplo-
types (two haplotypes in common) is also 0.25. The remaining possibility
is that they have one marker haplotype in common, which has probability
0.50.

T we deliberately choose two siblings who are both affected by the
disease, then these siblings will be more similar in that part of the genome
surrounding the disease susceptibility gene than we would expect by chance.
If the marker locus is in this vicinity, then the probabilities that two affected
sibs will share 0, 1, or 2 marker haplotypes will depart from the (0.25, 0.5,
0.25) split indicated above. This way of looking for genetic linkage is called
the affected sib pair method. If disease susceptibility is conferred by a
dominant gene, it can be shown thit the main effect of linkage is to reduce
the probability of the affected sibs sharing no marker haplotypes and to
increase the probability of their sharing both, while the probability of their
sharing one marker haplotype is scarcely affected. A simple and reasonably
efficient statistical analysis may therefore be carried out by disregarding the
pairs sharing one marker haplotype.

Table 11.1 shows the frequency of shared HLA haplotypes amongst 27
pairs of sibs affected by nasopharyngeal carcinoma.* Assuming dominant
inheritance of the disease susceptibility gene and ignoring the 8 sib pairs
with only one marker gene in common leaves N = 19 pairs, 16 of which
share both haplotypes, and 3 of which share no haplotypes. Let Q2 be the
odds that a pair shares Waplotypes. The log likelihood
for Q is

161og(£2) — 191og(1 + ).

The most likely value of 2 is 16/3 = 5.33, so that the maximum value of
the log likelihood is

16log(5.33) — 1910g(6.33) = —8.29

*From Day, N.E. and Simons, J. (1976) Tissue Antigens, 8, 109-119."
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Fig. 11.1. Log likelihood ratio for HL.A linkage.
and the log likelihood ratio fop any other value of € is
161og(2) — 1910g(1 + Q) — (—8.29).

Fig. 11.1 shows the log likelihood ratio plotted against log(€2).
Under the null hypothesis that there is no linkage, the two outcomes are

equally probable, so the null value of ©2 is 1.0 and the null value for log(Q) -

is O This is indicated in Fig. 11.1 by the vertical line. The log likelihood
ratio for Q =1 is

16log(1) — 1910g(2) — (—8.29) = —4.88
. . 7
(1{1d1.(_:a,ted on the graph with an arrow). The null value of £ does not fall
within the range which we have regarded as supported.

Whet_her the mode of inheritance of disease suscepfibility is dominant
or recessive must be established in studies of extended families. If it is
domlnar}t, the likelihood ratio test described above provides an efficient
test of linkage. However, if the disease susceptibility gene is refessive, the

probability that affected si ill share one marker hapl i

I otype in co

is also reduced and a fiore efficient t@st for linkage . eg’ It? &lisn;(fiﬁ_\
between 2 and < 2 shared Haplotypes. In this case the null value of the

Ared na

odds parameter 2 is 0.25/0.75 = 0.333.

Exercise 11.1. If the evidence for ) is based i i i
on the 16:11 spl
the log likelihood ratio for Q = 0.333. "piit ot sib pairs, find
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11.2 Log likelihood ratios and p-values

As with the supported range for a parameter a general need is felt to
measure support for the null hypothesis-on the more familiar scale of prob-
ability. The way this is done in frequentist statistical theory is very similar
to the way in which coverage probabilities are calculated for confidence
intervals (see Chapter 10). We imagine a large number of repetitions of
the study with the parameter equal to its null value and define the p-value

e

significant. If the p-value is large, the finding is said to be not statistically
significant. Traditionally the*value p = 0.05 has been used to divide signif-
icant from non-significant results, but the modern practice is to report the
actual p-value, particularly when it lies in the range 0.001 to 0.10. Outside
this range it is enough to give the p-value as p < 0.001 or p > 0.10.

The argument which defines the p-value closely follows that used to
define the coverage probability of & supported range in Chapter 10. Asin
that case, we shall start with the problem of drawing conclusions about the
value of the Gaussian mean, g, on the basis of a single observation, z. In
this case, the value of thwli_llood ratio for a null value pg is equal

to
RYELITAY
2 o ’

Exercise 11.2. You observe a value z = 116 and wish to test the hypothesis
that it was obtained from a Gaussian distribution with mean x = 100 (the null
value). Assuming that o is known to take the value 10, what is the value of the
log likelihood ratio at the null value?

We imagine a large number of repetitions 'bf the study when the null hy-
pothesis is true. The p-value is the proportion of such repetitions with log
likelihood ratios less than this observed value. One way that the p-value

. can be calculated is by computer simulation of such repetitions of the study.

Exercise 11.3. Such a simulation is envisaged in Exercise 10.1. Of the first four
values generated, what proportion have log likelihood ratios at the null value less

. than that observed?

This is a very inaccurate estimate of the p-value. An accurate estimate
would, of course, require several thousand repetitions to be generated.
The method of generating a p-value by computer simulation is known
as a Monte Carlo test and it is quite widely used. However, in this case
we do not need to resort to the computer as we can work out the p-value
theoretically. If X represents the value obtained in such a repetition, the
p-value is defined as the probability that this yields a smaller log likelihood
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ratio than that observed, that is,
1/X~pp\?
Pr [—5 (Tﬂe> < Observed log likelihood ratio} .
e
This is the same as

2
Pr [(X—;@> > —2 x (Observed log likelihood ratio)} Y

and since we are agsuming that the null hypothesis is true in such repeti-
tions, the above probability is obtained by referring

—2 x (Observed log likelihood ratio)

to the chi-squared distribution on one degree of freedom.

Exercise 11.4. Use the table of the chi-squared distribution in Appendix D to
find the p-value for the example of Exercise 11.2

For N observations from a Gaussian distribution, the same rule for obtain-
ing the p-value holds, the value of minus twice the log likelihood ratio now

being . )
M — po
(%)

where M is the mean of the N observations and S = o/v/'N.

This relationship between the log likelihood ratio and the p-value holds
approzimately for non-Gaussian log likelihoods. The approximation will be

PPTOTITY

adequate providing there is a sufficient amount of data to ensure that the
log likelihood curve is approximately quadratic.

In our example of testing for genetic linkage, using the method most
appropriate for dominant inheritance, the log likelihood ratio at the null
parameter value is —4.88 so that

—2 x (log likelihood ratio) = 9.76.

The probability of this being exceeded in a chi-squared distribution on one
degree of freedom is 0.0018, so that the p-value is approximately 0.002.
This is an example of a log likelihood ratio test.

Exercise 11.5. Use tables of the chi-squared distribution to find the p-value
corresponding to the log likelihood ratio calculated in Exercise 11.1.

There are two other approximate methods of obtaining p-values which are
widely used. These are called Wald tests and score tests, and both involve

—_
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quadratic approximations to the log likelihood curve. The problem of cal-
culating exact p-values when these approximate methods cannot be used
will be discussed in Chapter 12.

11.3 Wald tests -

The first quadratic approximation we shall consider is the same as that
used for approximate confidence intervals in Chapter 9. For a parameter,
9, the log likelihood is approximated by the quadratic curve

1 /M-06\?

2 S
whe;e M is the most likely value of the parameter and S is the standard
deviation of the Gaussian approximation, calculated frogj;he curvature of _
log likelihood at its peak- This provides the closest possible appro)umatlon

i the region of the most likely value. Using this approximation, the ap-
proximate value of minus twice the log likelihood ratio at the null value,

9@,15
M —6p\?
8

For the log odds parameter of the Bernoulli likelihood, €2, the values of

M and S are
D
M = log<——N_D>
' 1 1
‘ S = \Vpta-p

For the log likelihood shown in Fig. 11.1,

M = log (?) = 1.674
1 1
S = I + 3= 0.629.

The approximate log likelihood ratio curve corresponding to these values
is shown in Fig. 11.2 (broken lines). The arrow indicates the approximate
log likelihood ratio at the null value, log(£) = 0.0,

1/1.674—0.0)\?
o 22E ) - 354
2 ( 0.629 ) 3
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Fig: 11.2. The Wald test.

The approximate value of minus twice the log likelihood ratio is

1.674 — 0.0\ 2
< 0.629 ) =708

and referring this value to the chi-squared distribution yields an approxi-
mate p-value of 0.008. This method of obtaining an approximate p-value
is called the Wald test. '

Exercise 11.6. Carry out the Wald test which approximates the log likelihood
ratio of Exercise 11.1.

11.4 Score tests

The second quadratic approximation to the log likelihood ratio which we
consider is based on the gradient and curvature of the log likelihood curve
at the null value of the parameter. This is the most accurate quadratic
approximation in the region of the null value. This approximation to the
log likelihood ratio of Fig. 11.1 is shown in Fig. 11.3. Here we have displaced
the true log likelihood ratio curve upwards in order to demonstrate that
the true and approximate curves are the same shape in the region of the
null value. -

If U is the gradient of the log likelihood at the null value of the param-
eter, 0p, and V is minus the curvature (also at the null value), then this
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Log likelihood ratio
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Fig. 11.3. The score test.

approximation to the log likelihood ratio is given by the formula,

V(6-6-U/V)’
’ .

This approximate curve has its maximum value at 6o + U/V and minus
twice the log likelihood ratio at 8 = 8, is

wy

|4

The gradient, U, is called the score and we shall call V' the score variance.
The approximate score test is carried out by comparing (U)%/V with the
chi-squared distribution with one degree of free.domfr

For the Bernoulli log likelihood in terms of the log odds parameter,
log(€2), the score and score variance at the null value {lg are most easily
expressed in terms of the null value of the probability parameter,

_ Yo -
T T+ 00

TThe score test is usually carried out using the ezpected .value of.V (yvorked ogt
assuming the null hypothesis to be true). In the applications discussed in this book this
is not usually possible, and we have defined the score test in terms of the observed value
of V.

AN
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They are

U = D—Nﬂ'@,
V = Nﬂ'@(l—ﬂ'g).

In our example, D = 16, N = 19, and wp = 0.5 so that

U = 16-95=6.5
V = 19x0.5x0.5=4.75

The score test is (6.5)2/4.75 = 8.89 and the probability that chi-squared
exceeds this value is 0.003.

Exercise 11.7. Carry out the score test which approximates the log likelihood
ratio of Exercise 11.1.

11.5 Which method is best?

The methods for calculating p-values given in this chapter are approximate
except for the special case of a Gaussian: likelihood with known standard
deviation o, when the three methods coincide and yield exact p-values. In
other cases, where the log likelihood is roughly quadratic, the approxima-
tions to the p-value are good and the three methods give similar answers.
When the three methods give seriously different answers this means that
the quadratic approximations are not sufficiently close to the true lbg like-
lihood curve over the region stretching from the null value of the parameter
_# to the most likely value. Of course, if the most likely value and the null
value are very far apart, the curve is very difficult to approximate. In this
situation, all three methods will give very small p-values and although these
may differ substantially from on another, the choice of statistical method
would not affect our scientific conclusions. This is the case in our exanjlple
in which the three methods gave p-values of 0.002, 0.008, and 0.003.
=  The log likelihood ratio test is the only one of the three tests which
remains the same when the parameter is transformed, and is to be preferred
in general. The approximate equivalence of the other two tests to the log
- likelihood ratio test depends on the quadratic approximation, and will be
improved by choosing an appropriate scale for the parameter. In particular,
for parameters such as the odds, or the rate, which can take only positive

values, it is better to calculate Wald and e tests in_ter/ms, of thedog -

parameter. If the three methods differ seriously, even after choosing an
appropriate scale for the parameter, it is usual to advise the use of exact
p-values. Methods for calculating these will be discussed in Chapter 12,
but these are not without their difficulties.
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11.6 One-sided p-values

‘We have defined the p-value as the probability that, when the null hypoth-
esis is true, a repeated study will provide less support for the null value of
the parameter than did the study actually observed. We have measured
support for the null value of the parameter as the difference between the
log likelihood at the null value and the log likelihood at the most likely
value. This is satisfactory when the model allows the parameter to take
any value within its natural range, but needs to be redefined if the model
allows the parameter to vary only within a restricted range. In our HLA
linkage example, if 2 is the odds that a sib pair shares both haplotypes
rather than neither, the null value is @ = 1 and linkage is indicated by
values in the range Q > 1. Values in the range Q < 1 are not allowed in
a model for genetic linkage. In these circumstances, the value of  which
is best supported by a study in which 5 sib pairs are found to share both
haplotypes and 10 sib pairs to share neither is no longer 5/10, since this
parameter value is not allowed by the model. The best supported value
amongst allowable values is = 1. Thus only studies in which the split is
in the expected direction would be regarded as providing evidence against
the null hypothesis. The p-value calculated from this viewpoint is called
a one-sided p-value, while the more usual p-value appropriate when the
model allows the parameter to take values to both sides of the null value
is called a fwo-sided p-value.

Approximate one-sided p-values can be obtained in most circumstances
by simply halving the corresponding two-sided p-value. This follows from
the fact that approximately half of the hypothetical repetitions of the study
under the null hypothesis would lead to results in the wrong direction and,
in a one-sided test, these would not be treated as evidence against the
null value. In our example, the log likelihood ratio test for linkage gave
p = 0.0018 and the approximate one-sided p-value is 0.0009.

The assumption that the probability model only allows its parameter to
take on values to one side of the null value is a strong one and rarely justified
in practice. Thus, one-sided p-values should only be used in exceptional
circumstances. The genetic linkage example is one of these.

11.7_ Tests for the rate parameter

We have described the three methods for obtaining approximate p-values
using a null hypothesis which concerns the parameter of a simple binary
probability model. These methods were all based on the Bernoulli likeli-
hood. In this section we shall describe the corresponding methods for the
rate parameter, A, for a cohort study. Here the log likelihood takes the
Poisson form:

Dlog()) — )Y,
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where D is the number of failures observed and Y is the person-years

observation.
The log likelihood ratio test for the null value A = A compares the log

likelihood at Ay with the log likelihood at A = D/Y’, the most likely value.

The log likelihood ratio is, therefore,

[Dlog(Ap) — AoY] — [D log (g) - gy]

which simplifies to
D
—Dlog (f) + (D - E),

where E = ApY is the ‘expected’ number of failures obtained by multiply-
ing the null value of the rate parameter by the person-years observation in
the study. Minus twice this value can be compared with the chi-squared
distribution with one degree of freedom.

The Wald test is based on the best Gaussian approximation to the log
likelihood in the region of the most likely value. It is best carried out on
the log()\) scale, where M =log(D/Y) and S = /1/D.

Finally, the score test is based on the best Gaussian approximation to
the log likelihood in the region of Ap. Some simple calculus shows that the
score and score variance {on the log(}) scale) are given by

U:D—E, V=E,

so that the score test is (D — E)?/E.

The null hypothesis most frequently of interest is that the rate in the
cohort is no different from the rate in a reference population. Typically
this reference rate is based on official statistics for a whole country and
is estimated from so many events that it can be assumed to be a krewn
constant. In practice the expected number of failures is usually calculated
separately for different age bands and summed and E refers to the total
expected number added over age bands. In Chapter 15 we show that the
theory described above extends without change to this situation.

Exercise 11.8. In the vicinity of a nuclear reprocessing plant, 4 cases of child-
hood leukaemia were observed over a certain period while, from national registra-
tion rates, we would have expected only 0.25. Compare the log likelihood ratio
and score tests of the null hypothesis that the incidence rates of leukaemia in the
area do not differ from the national rates.”

In fhis case the two methods differ considerably, although both suggest
a very small p-value. This reflects the fact that D is very small and the

*These data are discussed in detail by Gardner, M.J. (1989) Journal of the Royal
statistical Society, Series A, 152, 307-326.
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Gaussian approximations are unreliable: We shall discuss methods for use
in such situations in Chapter 12.

11.8 Misinterpretation of p-values

Reporting of p-values has come into. disfavour because they have been
widely misinterpreted. Although the same is true of confidence intervals,
the nature of the misinterpretation of these is much less serious.

Most scientists interpret the 90% confidence interval as a range within
which there is a.90% probability that the parameter value lies. We saw in
Chapter 10 that, in the frequentist view of statistics, this is not correct
— such an interpretation requires probability to be interpreted in terms of
subjective degree of belief. In practice, however, it is not a serious error and
does not usually lead to serious scientific misjudgement. The corresponding
misinterpretation of the p-value, as the probability that the null hypothesis
is true, is a much more serious error. Small studies which should be quite
unconvincing are quoted as strongly negative findings because they have
large p-values. The fact that this error is still widespread is the main reason
why many authors currently discourage the use of p-values.

11.9 Lod scores and p-values

Our example in this chapter concerns genetic linkage and geneticists have
taken a rather different approach to measuring the amount of evidence
against the null hypothesis. Typically the result of a linkage analysis is
presented as a lod score defined in terms of the log (base 10) likelihood for
a parameter, 0, where this is defined as one minus the probability that two
genes are passed from parent to offspring together. This probability is 0.5
when the two loci are unlinked but greater than 0.5 when there is linkage.
Thus the null value of 6, which is called the recombination fraction, is 0.5
and linkage is represented by 6 < 0.5. The lod score for any specified value
of § compares the log likelihood with its value at 8 = 0.5. It is conventional
to consider linkage to have been demonstrated if the most likely value of 8
is less than 0.5 and gives a lod score greater than 3.0.

Using the relationship between the different systems of logarithms ex-
plained in Appendix A, a lod score of 3.0 corresponds to

—2 x (log likelihood ratio) = 13.82

and, referring this to the chi-squared distribution on one degree of freedom
shows this to be approximately equivalent to a p-value of 0.0002. However,
since we are only interested in values of 6 less than 0.5, the test is one-sided
and this value must be halved to yield p ~ 0.0001. This is much smaller
than we would require p-values to be in other areas of research, and it would
appear that geneticists are much more difficult to dissuade from the null
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hypothesis than other scientists. This is usually justified on the grounds
that the human genome is immense and, a priors, it is very unlikely that any
one marker locus is linked to a disease susceptibility gene. This argument
has considerable force when searching a large number of markers in a ‘blind

fishing expedition’, but would not hold if there were good a priori reasons.,

to suspect linkage in a specified region. The interpretation of lod scores,
like that of p-values, must take account of the scientific context and rigid
criteria should be avoided.

Solutions to the exercises

11.1 At the most likely value, Q2 = 16/11 = 1.455, the log likelihood is
16 log(1.455) — 27 log(2.455) = —18.249

while at the null value = 0.333, the log likelihood is
1610g(0.333) — 27 log(1.333) = —25.354.

The log likelihood ratio at the null value is therefore

—25.354 — (—18.249) = —7.105.

11.2 The value of the log likelihood ratio at p = 100 is

~

_1(16-100\7 o
2 10 oo

11.3 The first four observations of the computer simulation were 104, 115,
82 and 92 and the solution to Exercise 10.1 showed that the corresponding
values of the log likelihood ratio at p = 100 are —0.08, —1.125, —1.62 and
—0.32. Only 1 of these is less than the observed log likelihood ratio — a
proportion of 0.25.

11.4 The value of minus twice the observed log likelihood ratio is 2.56 and
referring this to the table of the chi-squared distribution in Appendix D
shows the p-value to be a little over 0.10.

11.5 Minus twice the log likelihood ratio is 14.21. This corresponds to a
very small p-value, 0.00016. Such results are usually reported as p < 0.001.

11.6 The most likely value of the log odds parameter is

M =log(16/11) = 0.375,
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and the standard deviation of the Gaussian approximation to the log like-

lihood around M is
/1 1
S = —1€+ﬁ—0.392.

The null value of the log odds is log(0.333) = —1.100 so that the Wald test

18
0.375 — (~1.100)\* _
(W) = 14.16.

This is very close to minus twice the log likelihood ratio and the approxi-
mate p-value is 0.00017.

11.7 The null value for the probability parameter is mp = 0.25 so that

U 16 — 27 x 0.25 = 9.25,
V = 27x0.25 x0.75 = 5.0625.

il

The score test is
(9.25)2

5.0625
and p-value is less than 0.001.

= 16.90

11.8 The log likelihood ratio chi-squared value is

—2 % [—4log (%) +(4- 0.25)] = 14.681.

The score test is
(4 — 0.25)2

= 56.250.
0.25 5

Both give p < 0.001.
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Small studies

N p)

In small studies the shape of the log likelihood for a parameter can be ap-
preciably different from the quadratic shape of the Gaussian log likelihood
and p-values and confidence intervals based on Gaussian approximations
can then be misleading. It is conventional in such situations to report
eract p-values and confidence intervals. In this chapter we will explain
how these are conventionally calculated, while drawing attention to some
serious difficulties.

12.1 Exact p-values based on the binomial distribution

Consider again the example in Chapter 11 concerning genetic linkage be-
tween a gene which renders a subject susceptible to a disease, and a marker
gene. The test for linkage was based on the 16 sib pairs with two haplo-
types in common and the 3 pairs with no haplotypes in common, so the
log likelihood for €2, the odds of having two haplotypes in common, is

161log(§2) — 191og(1 + Q).

The most likely value of © is 16/3 = 5.33 and the log likelihood takes its
maximum value of —8.29 at this value of 2. The value 2 = 1 corresponds
to no linkage and the log likelihood ratio for 2 = 1 is therefore

161og(1) — 19log(1 + 1) — (—8.29) = —4.88.

The corresponding p-value is defined as the probability of obtaining a log
likelihood ratio, less than —4.88, during many repetitions of the study in
which © = 1. In the last chapter this probability was obtained approx-
imately from the chi-squared distribution; the problem now is to find its
exact value.

Bach new repetition of the study will give rise to a log likelihood ratio
for = 1. To calculate this it is necessary to go through the same steps as
for the split of 16:3. For example, a repetition in which the split was 10:9
gives a log likelihood for 2 of

1010g(2) — 1910g(1 + Q).
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Table 12.1. A computer simulation and the binomial distribution

Log likelihood ratio Simulated Binomial
Split Two-sided One-sided frequency probability

0:19 —13.17 0 0 0.000002
1:18 -9.25 0 1 0.000036
2:17 —6.78 0 17 0.000326
3:16 —-4.88 0 112 0.001848
4:15 -3.39 0 512 0.007393
5:14 —2.22 0 1777  0.022179
6:13 —-1.32 0 4519 0.051750
7:12 —0.67 0 9238 0.096107
8:11 —-0.24 0 14523 0.144161
9:10 —0.03 0 18160 0.176197
10:9 —-0.03 —-0.03 18035 0.176197
11:8 —-0.24 —0.24 14857 (.144161
12:7 —0.67 —0.67 9675 0.096107
13:6 —-1.32 —-1.32 5278 0.051750
14:5 -2.22 —2.22 2306 0.022179
15:4 -3.39 -3.39 750 0.007393
16:3 —4.88 —4.88 194 0.001848
17:2 —6.78 —6.78 38 0.000326
18:1 -9.25 —-9.25 7 0.000036
19:0 —13.17 —13.17 1 0.000002

The most likely value for Q is 10/9 = 1.11 and the maximum value of the
log likelihood is

10log(1.11) — 19log(1 + 1.11) = —13.14.
The log likelihood for £ = 1 based on this split is therefore
10log(1) — 191og(1 + 1) — (—13.14) = —0.03.

Exercise 12.1. Calculate the log likelihood ratio for € = 1 when the split
between the two outcomes is 15:4.

For a split such as 4:15, the log likelihood ratio depends on whether we
regard the model as allowing values of Q less than one. If not, then the
best supported value of Q given such a split is 1, and the log likelihood
ratio is zero. In this case a one-sided p-value is appropriate.

The way the log likelihood ratio for & = 1 depends on the observed
split is shown in full in Table 12.1, for both two-sided and one-sided views
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(m)?
(m)?
™ 3(7)*(1—x)
27(1 — )
1-m 3n(1 — n)?
(1-m)?
1-m)?

Fig. 12.1. Generating the binomial distribution.

of the problem.* In the two-sided case, the splits 2:17, 1:18, 0:19 and 17:2,
18:1, 19:0 all produce log likelihood ratios which are less than —4.88, and
the splits 3:16 and 16:3 produce log likelihood ratios equal to —4.88. In the
one-sided case, the splits 17:2, 18:1, and 19.0 give log likelihood ratios less
than —4.88 and the split 16:3 gives a log likelihood ratio equal to —4.88. To
find the p-values exactly we need to find the probabilities of the different
splits when Q = 1.

One way of calculating these p-values is to use a Monte Carlo approach
similar to that described in Chapter 11. A computer program is written
which splits the 19 sib pairs between the two outcomes with odds 1, and
repeats the process (say) 100 000 times. The result of doing this is shown
in the third column of Table 12.1. Out of 100 000 repetitions of the study,
none produced the split 0:19, one produced the split 1:18, 17 produced the
split 2:17, and so on. The probabilities of the different splits are therefore
estimated by the computer to be 0.00000, 0.00001, 0.00017, and so on.

As in the case of the Gaussian mean, the probabilities can also be
worked out theoretically, in this case using the binomial distribution.
Fig. 12.1 illustrates the derivation of the binomial distribution. The first
level of branching represents the possible outcomes of the first observation,
the upper branch indicating failure (with probability m) and the lower
branch indicating survival (with probability 1 — 7). The second level of
branching represents the outcome of the second observation. The proba-
bility that both subjects fail is (7)? and the probability that both survive is
(1 —7)?; the remaining two possibilities both have one failure and one sur-

*When calculating these log likelihood ratios when the splits are 0:19 or 19:0, note
that the expression 0log(0) takes the value 0.
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vivor and, since we do not need to differentiate between these, the branches
are allowed to merge, with a total probability of 2m(1 — 7). The diagram
continues with the inclusion of a third observation. The probability that all
three observations are failures is now ()3 and that all three are survivors
is (1 — n)3. The remaining probabilities correspond to 2:1 and 1:2 splits
of failures to survivors and have probabilities 3(7)?(1 — ) and 3n(1 — )2
respectively, the multiplier 3 arising because each of these points represents
the merging of 3 paths through the tree.

Exercise 12.2. Continue the diagram to generate the probabilities for all pos-
sible splits of N = 4 observations and also for N = 5.

When this process is continued it leads to the general result that the prob-
ability that N observations split as D failures and N — D survivors is

C(D,N)(n)P(1 - m)N-D.

where C(D, N), the number of ways of selecting D objects from N, is 1
when D=0or D= N and
Nx(N-1)x--x(N—-D+1)
Dx(D-1)---x2x1

otherwise. Binomial probabilities may easily be calculated by computer,
and tables are available for values of N and D up to about 20.

The binomial distribution with N = 19 and = = 0.5 is shown in the
fourth column of Table 12.1. A comparison between the third and fourth
columns of this table shows that the values estimated by the Monte Carlo
method are quite close to the correct values, particularly in the centre of
the distribution.

One of the areas of dispute when defining an exact p-value is whether
to define this as the probability of obtaining a log likelihood ratio less than
—4.88 or less than or equal to —4.88. This difficulty does not arise with the
Gaussian log likelihood because the probability of any one precise outcome
is zero, but it does arise here; in the two-sided case the splits 3:16 and
16:3 both give rise to the observed log likelihood ratio of —4.88 and have
probabilities 0.001848. If these splits are excluded, the two-sided p-value

-18

0.000002 + 0.000036 + 0.000326 + 0.000002 + 0.000036 + 0.000326

which adds up to 0.000728. If these splits are included, two further contri-
butions of 0.001848 must be included and the two-sided p-value is 0.004424.
Conventionally, splits giving rise to the observed log likelihood ratio are in-
cluded, but there are arguments in favour of including only one half of the
probability for these splits. This course of action gives the mid-p value. In
our example the mid-p value is 0.002576.
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Table 12.2. Log likelihood ratios and probabilities (N = 27, = = 0.25)

Split LLR Probability Split LLR Probability
0:27  -7.767 0.000423 14:13  -4.452 0.001775
1:26  -4.589 0.003810 15:12  -5.699 0.000513
2:25  -2.835 0.016509 16:11  -7.096 0.000128
3:24  -1.645 0.045858 17:10  -8.647 0.000028
4:23  -0.836 0.091716 189  -10.357 0.000005
5:22  -0.323 0.140632 19:8 -12.233 0.000001
6:21  -0.057 0.171883 .20:7 -14.288
7:20  -0.006 0.171883 21:6 -16.536
819  -0.149 0.143236 22:5 -18.999
9:18  -0.469 0.100796 23:4  -21.709
10:17 -0.956 0.060477 24:3  -24.716
11:16 -1.603 0.031155 25:2  -28.103
12:15 -2.403 0.013847 26:1 -32.054
13:14 -3.353 0.005326 27:0 -37.430

If these arguments are repeated for one-sided p-values it can be seen
that, whichever convention is adopted, the one-sided p-value is half of the
two-sided value. This is not generally true and is only the case here because
of the symmetry of the binomial distribution in this case. This in turn
derives from the fact that the null value of  is 1, corresponding to = = 0.5.
For a test of the null value 7 = 0.25, the relationship between one- and
two-sided p-values is not as simple.

Exercise 12.3. In the genetic linkage example, one of the tests for linkage com-
pares the observed split of the 27 sib pairs into 16 with two haplotypes in common
and 11 with one or zero in common with the probabilities 0.25 and 0.75 under the
hypothesis of no linkage. The log likelihood ratios and probabilities correspond-
ing to the different possible splits are shown in Table 12.2 (probabilities less than
0.000001 are omitted). Find the exact two-sided p-value for the hypothesis of no
linkage.

In this exercise the probability distribution for the different splits is not
symmetric and the one-side p-value cannot be obtained by halving the
two-sided value. In such situations there is no general agreement about
how two-sided p-values should be calculated, because there is no general
agreement about how to compare extremeness of splits at opposite ends of
the distribution. We have chosen to measure extremeness in terms of the
log likelihood ratio, but other criteria are also used and lead to different
two-sided p-values.

THE POISSON DISTRIBUTION 115

Table 12.3. Log likelihood ratios and probabilities (n = 0.25)

Cases LLR Probability

0 —0.25 0.778801
1 —0.64 0.194700
2 —241 0.024338
3 —4.70 0.002028
4 -7.34 0.000127
5 —10.23 0.000006
6 —-13.32 0.000000
etc.

12.2 The Poisson distribution

When the population at risk, N, is very large and the probability of failure,
7, is very small, the binomial distribution takes on a very simple form,
called the Poisson distribution:

where D! denotes D factorial
Dx(D-1)---x2x1

and 7 = N7. The same is approximately true of the number of failures in a
cohort subject to rate A and with ¥ person-years of observation. Providing
we can regard Y, at least approximately, as a fixed constant then the
probability of D failures is given by the Poisson distribution with n = AY.

The main use of the Poisson distribution is to calculate the p-value
corresponding to the null hypothesis which states that the rate in the study
cohort is the same as a reference rate, Ag. The null value of 7 is E = A\gY,
the expected number of cases. Given 5 = E, the Poisson distribution tells
us the probability for any value of D. The idea extends to the case where
the expected number of cases is calculated taking account of variation of
rates with time. ;

To illustrate the use of the Poisson distribution, we return to our exam-
ple of leukaemia surrounding a nuclear reprocessing plant (Exercise 11.8).
In that case the expected number of failures was 0.25 and the Poisson prob-
abilities for each possible value of D are shown in Table 12.3. The table
also lists the corresponding values of the log likelihood ratio for the null

" hypothesis, which we showed in Chapter 11 to be given by the expression

—Dlog (%) +(D-E).
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Table 12.4. Definition of the exact confidence interval

Probability

Cases (n=1.3663) (n=9.1535)
0 0.25505 0.00011
1 0.34847 0.00097
2 0.23806 0.00443
3 0.10842 0.01353
4 0.03703 0.03096
5 0.01012 0.05668
6 0.00230 0.08647
7 0.00045 0.11307
8 0.00001 0.12938
etc.

The observed number of cases of leukaemia was 4 and the corresponding
log likelihood ratio —7.34. To find the p-value we add the probabilities of
all values of D with log likelihood ratio less than or equal to —7.34 :

0.000127 + 0.000006 + 0.000000 = 0.000133.

Note that, in this case, there is no difference between the one- and two-sided
p-values.

12.3 Exact confidence intervals

An ezact confidence interval for a parameter is defined in terms of exact
p-values. The lower limit of the 90% interval for a parameter 4 is found
by searching for the null value, 6, whose p-value is exactly 0.05. Here,
the one-sided p-value which assumes that § > 6 is used. The upper limit
is defined similarly, save for the fact that the reverse one-sided p-value is
used, that is the p-value under the assumption 6 < 6. The search for
these values must be carried out by computer and is laborious, although
computational methods have been considerably improved in recent years.

Table 12.4 illustrates the idea of exact confidence intervals using the
leukaemia data discussed above. Poisson distributions are shown for two
values of n = E. Both values give one-sided p-values of approximately
0.05 when the observed number of cases is 4, since

0.03703 + 0.01012 4 0.00230 + 0.00045 + 0.00001 = 0.04991
and

0.00011 + 0.00097 + 0.00443 + 0.01353 + 0.03096 = 0.05000.
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Thus values of § E smaller than 1.3663 and values larger than 9.1535 have
one-sided p-values smaller than 0.05. Since E = 0.25, the exact confidence
interval for 6 lies between 1.3663/0.25 = 5.465 and 9.1535/0.25 = 36.614.

Exact confidence intervals are only exact in the sense that they are
derived from exact p-values. They do not necessarily have coverage proba-
bilities exactly equal to 0.90. For the Gaussian mean, u, when the standard
deviation is known, an exact 90% confidence interval does have a coverage
probability of exactly 0.90, but for parameters of other models this is often
not the case. This is because, in these cases, the coverage probability de-
pends on the unknown true value of the parameter. Thus, exact confidence
intervals are not exact in any scientifically useful sense.

This observation, taken together with the fact that there are several
different ways in which exact p-values may be defined, lead us to doubt the
practical usefulness of exact methods. Instead we would argue that, since
it is the log likelihood which measures the support for different values of
the parameter, scientific papers should aim to communicate the log likeli-
hood accurately and concisely. For large studies Gaussian approximations
allow us to communicate the log likelihood curve using only M and S, the
most likely value and a standard deviation. For small studies it might be
necessary to report the log likelihood in greater detail.

. 12.4 A Bayesian approach

The Bayesian approach goes further and uses the likelihood to update a
prior distribution for the parameter into a posterior distribution, using
Bayes’ rule as described in Chapter 10. No new difficulties are introduced
by the fact that a study is small, apart from the inevitable consequence that
the information in the likelihood will also be small, so the posterior distri-
bution will not be much different from the prior distribution. This means
that conclusions depend more upon our prior beliefs about the parameter
in a small study than they would in a large study. ‘

Similar answers to those yielded by the classical exact approach can
be obtained using Bayesian arguments if it is assumed a priori that we are
completely ignorant about the value of the parameter. Such an assumption
is called a wague prior belief and holds that no value of the parameter is
any more probable than any other value, so that the prior distribution is
flat. Onme difficulty is that a flat prior for a parameter 6 is not flat with
respect to log(f), so a flat prior for § and a flat prior for log(f) lead to
different posterior beliefs.

_This may be illustrated by our example of leukaemia in the neighbour-
hood of a nuclear plant, where the observed number of cases was D = 4
while the expected number from national rates was E = 0.25. It is con-
ventional to compare rates in the study population with reference rates by
the ratio of observed to expected cases, in this case 4/0.25 = 16.0. This
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Fig. 12.2. Log likelihood for the leukaemia data (D =4, E = 0.25).

Table 12.5. Posterior distributions for 6 for three vague priors

Prior Posterior probability distribution for ¢

(flat with 90% probability interval  Probability
respect to) Mean Lower limit Upper limit <10
Tog(0) 16.0 55 310 0.000133
0 20.0 7.9 36.6 0.000007
Ve 18.0 6.6 33.8 0.000030

may be regarded as the most likely value of the parameter, 8, of the Pois-
son probability model with n = #FE. The parameter § may be regarded as
an index of mortality in the cohort, relative to national rates.! The log
likelihood for @ remains Poisson in form and is plotted in Fig. 12.2.

‘In Bayesian statistics we start with the prior distribution for ¢ and mul-
tiply it by the likelihood to obtain the posterior distribution. The posterior
distribution is then used to calculate the (subjective) probability that @ lies
in a given range.” Table 12.5 summarizes the results of such calculations for
the leukaemia data for three different prior belief distributions — each of
them vague in some sense.

According to these analyses, it is almost certain that there is an effect

TA fuller discussion of this model will be encountered in Chapter 15.

o
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Table 12.6. Posterior distributions for # for three realistic priors

Prior Posterior probability distribution for
belief 90% probability interval  Probability
(90% limits) Mean Lower limit Upper limit 8<1.0
0.3-2.0 2.00 0.97 3.33 0.06
0.5-1.6 1.37 0.83 2.02 0.15
0.7-1.3 1.15 0.82 1.52 0.25

of living near Sellafield and the magnitude of this effect, as measured by
the mean of the posterior distribution, is very large. Unfortunately, these
conclusions are not scientifically credible. Ratios of observed to expected
cases of 5 are extremely rare in epidemiology when the numbers of cases are
large. This is true even for studies of heavily exposed versus completely
unexposed groups, and we would expect much smaller ratios for groups
defined only in terms of area of residence. That 5.5 is the lowest plausible
value for # does not seem to be a reasonable conclusion.

The problem lies with the choice of prior distributions. Prior to seeing
these data, no epidemiologist would seriously have believed that ¢ = 1000
and 8 = 2 are equally probable. Bayesian analyses with more realistic prior
distributions give more sensible answers. Table 12.6 shows the results of
analysis for three epidemiologists with more realistic prior beliefs. All these
prior distributions have mean 1.0, indicating that the epidemiologists have
no prior expectation of elevated rather than reduced risk of disease, but
they do differ in the range of values of ¢, around 1.0, which they consider
believable.}

Exercise 12.4. With which of the three epidemiologists would you most closely
identify yourself?

The conclusions of the three epidemiologists after seeing the data still
differ substantially. All tend towards the belief that there is an elevated risk
but the extent of the increase is now a lot less than before. The Bayesian
approach has therefore shown that such a small study as this cannot lead to
identical beliefs within the scientific community. The posterior distribution
is too influenced by prior belief and too little by the data.

tFor mathematical convenience only, all three distributions have been chosen from
the chi-squared family.
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Solutions to the exercises

12.1 For a 15:4 split, the log likelihood is
151log(2) — 1910g(1 + £2),

which takes its maximum value when 2 = 15/4 = 3.75. The values of the
log likelihood when 2 takes on values of 3.75 and 1 are, respectively

1510g(3.75) — 191log(4.75) = -—9.778,
15log(1) — 19log(2) = —13.170.

The log likelihood ratio at 2 = 1 is the difference between these, which is
—3.392. .

12.2 Fig. 12.3 shows the extension of the diagram from N = 3 to N =4
and N = 5. The numbers in boldface represent the values of C(D, N).

12.3 Table 12.2 shows that when the observed data are a 16:11 split, the
log likelihood ratio for m = 0.25 is -7.096. The two-sided p-value is the sum
of the probabilities for those outcomes leading to log likelihood ratios at
least this small, that is

0.000128 + 0.000028 + 0.000005 + 0.000001

+0.000423 = 0.000585.

12.4 There is no solution to this exercise!
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Fig. 12.3. Binomial distributions with N = 4 and N =5.



13
Likelihoods for the rate ratio

In previous chapters we have introduced the main ideas of probability mod-
els in epidemiology and discussed the use of likelihood to provide an es-
timate, confidence interval or p-value for the parameter of a probability
model. Although we have used the joint log likelihood for several parame-
ters our discussion of confidence intervals and p-values has been based on
probability models with only a single parameter. We now consider proba-
bility models with two or more parameters.

13.1 Comparing rates using the rate ratio

A simple and important problem which involves two parameters is the com-
parison of two rates, for example for a cohort which was exposed to some
environmental factor and an unexposed cohort. The probability model
which underlies such a comparison has parameters corresponding to the
rates of failure in the two cohorts. We shall use a subscript notation to
denote exposure groups and write A; for the rate parameter conditional on
exposure, and Ag for the rate parameter conditional on non-exposure.
Table 13.1 shows a preliminary tabulation of some data which will be
analysed in detail in this and the following chapter.* The data relate
subsequent incidence of ischaemic heart disease (IHD) to dietary energy
intake. The study cohort consisted of 337 men whose energy intake was
assessed by a seven-day weighed dietary survey. The subsequent follow-up
was for an average of 13.7 years and yielded 45 new cases of IHD. The table
divides this cohort into an exposed group consisting of men whose energy
intake was less than 2750 kcals per day, the remaining men being regarded
as unexposed. Although it might seem odd to denote the low energy intake
group as exposed, this is because low energy intake is a surrogate measure

for physical inactivity. Table 13.1 also introduces some algebraic notation:

Dy, D; for the number of disease events observed in the unexposed and
exposed cohorts respectively, and Yy, Y7 for the corresponding person-years
observation.

*Unpublished data. The study is described by Morris, J.N. et al. (1977) British
Medical Journal, 19 November 1977, 2, 1307-1314.
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Table 13.1. Incidence of ischaemic heart disease by energy intake

Energy intake
< 2750 keals > 2750 keals
(exposed) (unexposed)
Person years 1857.5 (Y1) 2768.9 (Yo)

5 exle e -
New cases 28 (D4) 17 (Do) w5

Estimated rate " 15.1 6.1
90% interval (11.1 —» 20.6) . (41— 9.1)

The data from the unexposed group leads to
Dy log(Ag) — AoYo = 17log(Ag) — 2768.9A¢

as the log likelihood for Ag. The most likely value of Ag is the observed
incidence rate, 17/2768.9 = 6.1 per 1000 person-years. The fact that this
estimate is based on only 17 observed cases is reflected in the rather wide
90% confidence interval for )\ stretching from 4.1 to 9.1 per 1000 person-
years. Similarly, the data from the exposed group leads to

Dl ].Og(/\l) — /\1Y1 =28 log(/\l) — 18575/\1

as tife log likelihood for A;. The most likely value of Ay is 28/1857.5 = 15.1
per 1000 person-years, and the 90% confidence interval stretches from 11.1
to 20.6 per 1000 person-years. The two groups provide independent sets
of data, so that the two log likelihoods are added to yield the joint log
likelihood

17log(Ao) — 2768.9X¢ + 28log(A\1) — 1857.51.

This is the likelihood for any specified pair of values for the two parameters
Ao and A;. Its maximum value is achieved when these parameters take
values equal to the corresponding observed rates — 6.1 and 15.1 per 1000
person-years respectively. _

The 90% confidence intervals for the two rates do not overlap and it
might seem that the data support the proposition that the two rates are
different. In general, however, the degree of overlap of confidence intervals
is a poor criterion for comparing rates. If the interval in the high intake
group had stretched from, say, 3.0 to 12.0 then it could be argued that, since
values of the rate parameter in the range from 11.1 to 12.0 are included
in both intervals, the data do not support the idea that the rates are
different. The flaw in this argument is that this range is at the extreme
of both ranges; the support for the proposition that the rates are similar
requires two rather poorly supported propositions to hold simultaneously.
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The way to approach such problems is to reparametrize the model in
such a way that one of the new parameters makes a comparison. The usual
comparison parameter for two rates is the rate ratio, which we shall denote
by the Greek letter §. Since 6 = A; /), the rate in the exposed cohort may
be written as 8¢ instead of A; and our model can be written in terms of,
the parameters (6, Ao) instead of (A1, Ao).

The log likelihood for Ag and X; in terms of Dy, Dy, Yy, Y1 is

Dy log(/\o) — XoYo + Dy log(/\l) — MY

To express the log likelihood in terms of the new parameter system, we
substitute ) for A;, to get

Dy log(Ao) — Ao¥o + Dy log(6X) — BAeY1,
which reduces to
Dlog(ho) + Dy log(8) — MY — 0XoY4,

where D = Dy + D, is the total number of observed disease events. For
the example in Table 13.1, the log likelihood is

451og(Ao) + 281og(6) — 2768.920 — 1857.50)

The purpose of this choice of new parameters for the model is to concen-
trate the comparison of the rates into the parameter 6, but unfortunately,
the log likelihood for these new parameters cannot be divided into a sum
of separate parts, one for each parameter. The appearance of the term
1857.50) means that the shape of the log likelihood with respect to 6 de-
pends on the value of )\g, and this is unknown. When assessing the support
for different values of 6, not knowing A is somewhat of a problem and in
this context Ag is called a nuisance parameter.

There are two ways of dealing with a nuisance parameter when con-
structing a likelihood for the parameter of interest. These will be described
in the next two sections. »

13.2 Profile likelihood

The obvious way to deal with a nuisance parameter is to estimate its value.

For each value of the rate ratio 6, the value of A\p which maximizes the like-
lihood can be determined and substituted into the joint log likelihood. The
resulting maximized log likelihood can then used as a measure of support
for this value of 6.

This idea is illustrated in Fig. 13.1. The top graph shows the log like-
lihood ratio for log(Ag) and log(f) as a contour map. The contour lines,
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corresponding to parameter values which have equal log likelihood, are ap-
proximately elliptical (this has been aided by the choice of log scales for
both parameters, so that they are not bounded). The contours shown cor-
respond to log likelihood ratios of —1, —2, —3, —4, and —5 relative to the
maximum value.

The vertical arrows denote specified values of log(6) for which we require
to measure the support. For each fixed value of log(f), we find the value
of log(X¢) which maximizes the log likelihood and plot this maximized log
likelihood on the lower graph. This is then used to measure the relative
support lent by the data to different values of log(6). By analogy with
physical maps, this curve is called a profile log likelihood. A profile log
likelihood is not a true log likelihood since it cannot be directly obtained by
taking the log of the probability of the data. However, in most situations
it behaves in exactly the same way as a log likelihood. It can be seen
from Fig. 13.1 that the value of § which gives the largest value of the
profile log likelihood is also the value corresponding to the maximum of
the total log likelihood. The curvature of the profile log likelihood at this
maximum point can be used to calculate approximate confidence intervals
and Wald tests, and score tests for null values of 6 can be carried out using
the gradient and curvature of the profile log likelihood at the null value.
Similarly, a log likelihood ratio test can be carried out by calculating minus
twice the profile log likelihood ratio at the null value of 6.

In the case of the the rate ratio, this process is simplified since the
degivation of the profile log likelihood can be carried out algebraically,
leading to a mathematical equation for the curve. The value of Ao which
maximizes the log likelihood for any given value of # may be shown to be

_b
Yo + 6Y3

and substituting this for Ag in the log likelihood expression gives the profile
log likelihood:

D1 log(8) — Dlog(Yp + 6Y1) + Dlog(D) — D.
Since the last two terms do not depend upon 0, they are irrelevant and

may be omitted. We are also at liberty to add terms which do not involve
0, and addition of

D, log(Y1) + Do log(Yo)

yields, after some rearrangement, the expression:

Y
Djlog (%) — Dlog (1 + %) .
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Fig. 13.1. Log likelihood surface for § and X\ (above) and profile log
likelihood for 8 (below).
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This is exactly the same as a Bernoulli likelihood for the odds parameter

_om

Q=1
Yo

based on a split of D cases as Dy exposed and Dy = D — D unexposed. It
follows that estimation of @ using the profile log likelihood is equivalent to
estimating the odds, €, in the binary model; the two estimates differ only
by the known multiplier, Y7 /Y5.

From the Bérnoulli likelihood, the most likely value of Q is D1/Dg and
the standard deviation of log(f?) is

1. T
Dy  D;
It follows that the most likely value of 8 is

D1/Dy _ Dy/1h
Yi/Yo  Do/Ys

which is the ratio of the most likely values of the two rates and since
log(@) differs from log(f2) only by a known constant, the shape of the log
likelihoods are identical, and the standard deviation of log(f) is also

1 i 1
Dy  D:’
Exercise 13.1. Calculate the maximum likelihood estimate of the rate ratio for
the data of Table 13.1 and give 90% confidence limits.

"For the calculation of p-values, the null hypothesis generally of interest
is that the two rates are equal, so that §; = 1 and g = Y1/Y5. In terms
of the corresponding risk parameter the null hypothesis is that

Qo Y

T 110, Yottt

The score is
U= D1 - Dﬂ'@,

which can be written as
U=D,~—-EFE;

where E, = Dmp, is the expected number of exposed cases under the null
hypothesis. The score variance is

¥

V= Dﬂ'@(l - 7'('@).

P

f
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Exercise 13.2. Test the significance of the effect of low energy intake in the
data of Table 13.1. -

13.3 Conditional likelihood

The approach outlined above starts from the question: what is the probas-:

bility that, during follow-up, Dy events occur in the unexposed cohort and
D; in the exposed cohort? The resulting likelihood involves not only the
rate ratio 6 (the parameter of interest), but also a nuisance parameter, A.
Replacing the unknown nuisance parameter by its most likely value leads
to the profile log likelihood for 8. This argument is appéaling in that it
closely follows the way in which cohort studies are designed and executed
— we decide in advance upon the cohort to be followed and the duration of
follow-up and wait to see how many disease events occur in different sub-
groups. However, it is not essential that the likelihood argument should
correspond so closely with the study design. In partigular, if some aspect of
the result contains little or no information about the parameter of interest,
then we are free to treat it as if it were fixed by the study design. The aim
of such an argument, which is called a conditional argument, is to obtain
a new probability model for the data which does not involve the nuisance
parameter.

In this case the total number of cases tells us nothing about the effect
of exposure, which depends on the split among cases between exposed and
not exposed. We therefore take the total number of events as fixed, corre-
sponding to a study in which the follow-up continues for just long enough
for D events to be observed. The analysis of the study then concentrates
on the split of cases between the exposed and unexposed sections of the
cohort, and starts from the question: given that D failures occurred, what
is the probability that Dy of them occurred in the unexposed group and
D in the exposed group?

The split of the D failures between exposed and unexposed groups may
be described using the binary probability model. This is illustrated in
Fig. 13.2. The left-hand tree shows the observed split of the failures and
the right-hand tree shows the expected split of cases. If Y7 and Yj can be
regarded as fixed, the odds that a case was exposed is

_Ah v

T Yo Yo

and the log likelihood for @ is

oY1 oY,
D log (To> — Dlog (1 + Tg) .
Thus regarding the number of cases as fixed leads directly to a conditional
log likelihood which depends only upon 8. The log likelihood is conditional
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Fig. 13.2. The conditional argument.

in the sense that it takes as fixed an aspect of the data (the total number of
events, D) that was, in reality, an unpredictable outcome of the study. In
this case the profile and conditional likelihood approaches have led to the
same log likelihood and, therefore, to identical estimates and confidence
intervals, but in general this will not be the case.

The conditional approach always yields a true log likelihood, being
based upon a probability (albeit a conditional probability) of observed data.
Also, because this probability depends only on the parameter of interest, it
can be used to calculate exact p-values and confidence intervals. In our cur-
rent example, the probabilities for different splits of cases between exposed
and unexposed groups, given 6, can be obtained from the binomial distri-
bution. However, the conditional approach is not an automatic method,
but relies on our ingenuity in recognizing a suitable conditional argument.
Such arguments are not always possible. For example, it has not proved
possible to find an argument which leads to a conditional likelihood for the
rate difference, A1 — Ag.

In contrast, the profile method has the considerable virtue that it can
always be employed. Even if it is impossible to use an algebraic method to
obtain an explicit formula for the profile log likelihood curve, the deriva-
tion of the curve numerically by the procedure illustrated in Fig. 13.1 can
always be carried out by computer. The difficulty with this approach is
that the profile curve is not necessarily a true log likelihood. However,
in most situations it does approximately possess the properties of a true
log likelihood. These properties can safely be assumed when the number
of nuisance parameters is small in comparison with the total quantity of
data.

We should note that our current use the conditional approach requires
MYy and A1Y;, the expected numbers of cases in the two groups, to be
constants not influenced by the study outcome. Although this is approx-
imately true for the rare events usually studied by epidemiologists (see
section 6.3), it may not be an acceptable argument when the probabilities

of failure are high. In these cases, the likelihood derived in this chapter
oA

C
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can only be regarded as a profile likelihood and exact tests and confidence
intervals are not available.

13.4 Approximating profile log likelihoods

For the rate ratio it is possible to derive a mathematical expression for:

the profile log likelihood and hence find a Gaussian approximation from
which approximate p-values and confidence intervals can be calculated in
the usual way. This is not possible in general. The profile likelihood can
always be computed by going through the steps indicated in Fig. 13.1, but
the resulting curve usually cannot be represented by a simple algebraic
expression. Fortunately some simple rules, derived from calculus, allow us
to calculate Gaussian approximations to such profile log likelihoods, and
hence algebraic expressions for M, S, U, and V, which we can go on to
use in the usual way. These rules and their derivation are explained in
Appendix &. Here we briefly summarize the most important rules.

An important general problem is the estimation of the difference be-
tween two parameters §; and (5; when these are estimated from two in-
dependent bodies of data. If the log likelihood for By has a Gaussian
approximation defined by the most likely value My and standard deviation
S and the approximation to the log likelihood for $; is defined by M; and
51, then the Gaussian approximation of the log likelihood for §; — By has

M = Ml _M07

S = /(51)?+(5)2%

The rate ratio is a special case of this more general problem since its loga-
rithm may be written :

log (i—j}) — log(A1) — log(Ao)

and in Appendix C it is shown that these rules lead to the same Gaussian

log likelihood approximation as we obtained earlier. Here -we use them to

approximate the profile log likelihood for the rate difference. The most

likely value is the difference between the most likely values of the rates,
Dy Dy

M=t
i Y’

and, from Chapter 9, S1 = +/D1/Y1 and Sy = /Dy/Ys so the value of S

for the rate difference is
M)? - (Yo)?
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Exercise 13.3. Calculate an approximate 90% confidence interval for the dif-
ference between the rates using the data of Table 13.1.

A still more general problem concerns a weighted sum of parameters,
of the form

Wi+ Wafa + W3z + - )

each 3 parameter again being estimated from independent bodies of data.
The Gaussian approximation to the profile log likelihood for the weighted
sum has :

M = WiM+WoMs +WsMz+---

S = \/(W151)2 + (WzSz)z + (W3S3)2 +--- s
where Mj,S1,... etc. are the most likely values and standard deviations
for B1,... etc.. An example is the profile log likelihood for the cumulative

failure rate. In Chapter 5 we defined the cumulative rate by
AT 4 A%T2 1.

where A1, )2, ... are probability rates operating for time periods 71,772, .. ..
The cumulative rate is, therefore, a weighted sum of the form discussed in
this section. :

Exercise 13.4. Using the Gaussian approximation given in Chapter 9 for the
log likelihoods for rate parameters, derive an expression for the Gaussian approx-
imation to the profile log likelihood for the cumulative rate.

Solutions to the exercises
13.1 The most likely value of 8 is

Di/Y: _ 28/18575

= = 2.48.
Do/Yo _ 17/2768.9

The standard deviation of the estimate of log(6), is
S = +/1/28 + 1/17 = 0.3075,
so that the 90% error factor for 6 is
exp(1.645 x 0.3075) = 1.66.

The 90% confidence limits for the rate ratio are 2.48/1.66 = 1.49 (lower
limit) and 2.48 x 1.66 = 4.12 (upper limit). _
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13.2 The observed number of events in the low energy intake group is 28.
There were 45 events in total and, under the null hypothesis, the probability
of having been exposed is mp = 1857.5/4626.4 = 0.402. The score is

U =28 — 45 x 0.402 = 9.93,
and the score variance is
V =45 x 0.402 x (1 —0.402) = 10.81.
The score test is (U7)?/V = 9.12, giving p ~ 0.003.

13.3

28 17

= 18575~ 77689 — 0.00893 (8.93 per 1000 person-years).

= 28 17
o |/ (1857.5)2 " (2768.9)2

The 90% confidence interval is

= (.00321 (3.21 per 1000 person-years).

M £ 1.6455 = 3.65 to 14.2 per 1000 person-years.

13.4 The log likelihood for A! is approximated by a Gaussian curve with

Vi

Dl
— T

_—Y—l-’ Slz

Ml
Similarly for A%, A3, ... etc. The weights are the durations of observation,
T',T2, ..., so that the profile log likelihood for the cumulative rate has its
‘maximum at Dl D2
— 1 2
M= ?—IT + ?ET + e
and the standard deviation of the Gaussian approximation is /

T \° T2\?
SZ\/DI (Y_11> +D2? (W) 4
Note that, as we narrow the time bands to clicks, the ratio T//Y approaches
1/N, where N is the number of subjects under observation during the click.

In these circumstances, M is the Aalen—Nelson estimate of the cumulative
rate and S may be used to calculate an approximate confidence interval.
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Confounding and standardization

14.1 Confounding

Epidemiological studies generally involve comparing the outcome over a
period of time for groups of subjects experiencing different levels of expo-
sure. Such studies are usually not controlled experiments but ‘experiments
of nature’ of which the epidemiologist is a passive observer. In such in-
vestigations, there is always the possibility that an important influence on
the outcome, which would have been fixed in a controlled experiment, dif-
fers systematically between the comparison groups. It is then possible that
part of an apparent effect of exposure is due to these differences, and the
comparison of the exposure groups is said to be confounded. Statistical ap-
proaches to dealing with the problem of confounding aim to correct, during
analysis, for such deficiencies in the design of experiments of nature.

A particularly important potential confounding variable (or confounder
in many epidemiological studies is the age of subjects. We shall consider
an example in which subjects in a follow-up study are classified according
to whether their age at the start of follow-up was less than 55 years or 55
years or more. Suppose that the breakdown between the two age groups is
0.8 : 0.2 and that the conditional probability of failure is 0.1 in the first age
group and 0.3 in the second. When age is ignored the overall or marginal
probability of failure is

(0.8 0.1) + (0.2 x 0.3) = 0.14.

Now suppose that the age distribution differs between the two exposure
groups, being 0.8 : 0.2 in the not exposed group but 0.4 : 0.6 in the exposed
group (see Fig. 14.1). The marginal probability of failure for the unexposed
group is still :
(0.8 x 0.1) + (0.2 x 0.3) = 0.14,

but for the exposed group it is now
(0.4 x 0.1) + (0.6 x 0.3) = 0.22.

The marginal probabilities of failure now suggest an apparent effect of
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Age 0.1 F Age 0.1 F
< 55
0.8 ) 0.4 <55
0.9 S 0.9 S
03 ~F 03 ~F
0.2 0.6
55+ 55+
0.7 S 0.7 S

Unexposed subjects Exposed subjects

Fig. 14.1. Confounding by age.

exposure, but this is entirely due to the difference in age distributions
between the exposed and unexposed subjects.

In this example the apparent effect of exposure is entirely due to age
differences but confounding may also be partial, acting either to exaggerate
or to dilute a real relationship. As an example of this, suppose the effect of
exposure is to raise the probability of failure from 0.1 to 0.2 in the younger
age group and §rom 0.3 to 0.5 for older subjects. When the age distribution
is 0.8 : 0.2 in both exposure groups the overall effect of exposure is to
increase the marginal probability of failure from

(0.8 x0.1) + (0.2 x 0.3) = 0.14
in the unexposed group to
(0.8 x0.2) + (0.2 x 0.5) = 0.26

in the exposed group. When the age distribution is 0.8 : 0.2 in the unex-
Posed group and 0.4 : 0.6 in the exposed group the overall effect of exposure
is to increase the marginal failure probability of failure from

(0.8 x 0.1) + (0.2 x 0.3) = 0.14
in the unexposed group to
(0.4 x 0.2) + (0.6 x 0.5) = 0.38

in the exposed group. Thus the overall effect of exposure appears greater

—
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when the age distributions differ than when they are the same.

These examples demonstrate that a third variable, such as age, can dis-
tort the relationship between an exposure and failure provided it is related
to both exposure and failure. This dual relationship is often taken as the
definition of a confounder. However, although it is a necessary condition
for a variable to be a confounder, it is not sufficient: a confounder must
also be a variable which would have been held constant in a controlled ex-
periment. For example, in perinatal epidemiology, we might ask whether
birthweight could be regarded as confounding the relationship between the
receipt of proper antenatal care and the risk of perinatal death. Although
birthweight is related to both antenatal care and perinatal risk, it cannot
be regarded as a confounder since one of the results of successful antenatal
care should be adequate birthweights. Since it would not make sense to

envisage an experiment in which we varied the provision of antenatal care

while maintaining the distribution of birthweight constant, differences in
birthweight distribution cannot be regarded as a deficiency in the design
of the experiment of nature. It is not, therefore, a confounder.

14.2 Correction for confounding

The linking of confounding to an imaginary experiment helps to clarify the
ideas which lie behind statistical methods for dealing with the problem.
There are two rather different approaches, and these closely-mimic the
ways in which extraneous influences are dealt with in experimental science.

The classical approach to experimentation is to hold constant all influ-
ences other than the experimental variable(s) of interest. For example, to
avoid confounding by age, we would simply compare failure risks in exposed
and unexposed subjects of a fized age or, at least, falling within a narrow
range of ages. The statistical comparison would then be of failure prob-
abilities conditional upon age. The same comparison can be made in an
non-experimental study by the analytical strategy called stratification. By
dividing (or stratifying) the data according to age, the single experiment of
nature in which age has not been adequately controlled is transformed into
a series of smaller experiments within which age is closely controlled. The
analysis then compares probabilities of failure between exposure groups

within age bands. However, a consequence of this strategy is that individ- .

ual strata may contain too little data to be informative on their own. The
more finely we stratify the data, the more closely we control for confound-
ing, but the sparser our data becomes within strata. This impasse may
only be broken by making the further assumption -that the comparisons
estimate the same quantity within each stratum, and then combining the
information from the separate strata. We shall defer further discussion of
this approach to Chapter 15.

Holding extraneous variables constant is not the only model for good ex-
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perimentation, although it is certainly the most familiar. In the twentieth
century, experimentation has become a valuable tool in fields of study such
as biology, in which such close control of experimental material and con-
ditions is not possible. The idea of randomization has been central to this

development; if we cannot ensure that experimental groups are identical in
all important respects, then by assigning subjects to groups at random, we .

ensure that the probability distributions for extraneous variables do not
differ between exposure groups. Comparisons between the groups can then
be safely made. .

Returning to the comparison of failure probabilities between exposure
groups, it is rarely possible, in epidemiology, to use randomization to ensure
that extraneous variables have equal distributions in the different exposure
groups. However, it is possible to take account of differences in the dis-
tribution of a specific variable, such as age, by predicting the outcome for
exposure groups which have the same age distribution. This is done by
first estimating the age-specific probabilities of failure for each exposure
group, and then using these to predict the marginal probabilities of failure
for exposure groups which have a standard age distribution. This forms
the basis of the second statistical approach to dealing with confounding,
known in epidemiology as direct standardization.

14.3 Standardized rates

The remainder of this chapter concerns the use of direct standardization
to compare rates. Since rates are probabilities per unit time they can be
compared in the same way as failure probabilities. Age-specific failure rates
are estimated for each of the groups being compared, and these are used
to predict the marginal rates which would have been observed if the age
distributions in the comparison groups had begn the same as the standard
age distribution. These estimates are called standardized rates.

The choice of the age distribution to use for standardization depends
on the purpose of the analysis. It is quite common for the overall distribu-
tion of age, added over exposure groups, to be used as the standard, thus
simulating the results of an experiment in which the total study group was
randomly allocated between exposure categories. However, if one of ouy
aims is to facilitate comparisons with other published studies, it is more
useful to use an age distribution which is in general use. Several distribu-
tions are commonly used for this purpose. One is the age distribution of
the world population, another is the age distribution for developed coun-
tries. Since there is no ‘correct’ standard there is much to be said in favour
of using a uniform age distribution where the percentage falling in each
age group is the same. One advantage of using a uniform age distribution
is that the standardized rate is then directly proportional to the cumula-
tive rate for a subject experiencing the age-specific rates from the study
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Table 14.1. IHD incidence rates per 1000 person-years

Exposed : Unexposed
(< 2750 kcal) (= 2750 keal)
Age Cases P-yrs  Rate Cases P-yrs Rate
40-49 2 311.9 6.41 4 607.9  6.58
. 50-59 12 878.1 13.67 5 1272.1  3.93
60-69 14 667.5 20.97 8 888.9  9.00

Total 28 1857.5  15.07 17 27689  6.14

throughout life.

Direct standardization is most commonly used when comparing quite
large groups, such as the populations of different countries or regions. When
used with less extensive data it will yield statistically unreliable estimates
if some of the age-specific rates, although based on very few cases, receive
appreciable weight in the analysis.

To illustrate the technique of direct standardization we shall return to
study of ischaemic heart disease and energy intake, discussed in Chapter 13.
The incidence of ischaemic heart disease in the exposed group (low energy-
intake) is 15.1 per 1000 person-years while the rate in the unexposed group
is 6.1 per 1000 person-years. These rates, which take no account of any
possible confounding effect of age, are often referred to as crude rates to
distinguish them from standardized rates.

Table 14.1 shows the data stratified by 10-year age bands. The age
distribution is different in the two exposure groups; this may be seen by
converting the person-years to a proportion of the total person-years in each
group giving 0.168, 0.472, and 0.359 in the three age bands for the exposed
(low energy-intake) group and 0.210, 0.459, and 0.321 for the unexposed
(high energy-intake) group. These age differences might explain some of
the difference in the crude IHD incidence rates.

Using the uniform age distribution as standard, our estimate of the
marginal rate for a group of exposed subjects with a uniform age distribu-
tion is

(0.333 x 6.41) + (0.333 x 13.67) + (0.333 x 20.97) = 13.67

per 1000 person years and, for a group of unexposed subjects with a uniform
age distribution, it is

(0.333 x 6.58) + (0.333 x 3.93) + (0.333 x 9.00) = 6.50
per 1000 person-years. The standardized rates for the two groups are there-

fore 13.7 and 6.5 per 1000 person-years. These do not differ greatly from
the crude rates of 15.1 and 6.1 per 1000 person-years, showing that the
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confounding effect of age is small in this case.

Exercise 14.1. Find the standardized rates for the exposed and not exposed
groups using as standard the age distribution with probabilities of 0.2, 0.5, and
0.3 in the three age bands.

14.4 Approximating the log likelihood

When there are three age bands, as in the IHD and energy example, the
standardized rate parameter takes the form of a weighted sum of the age-
specific rate parameters,

WIN 4 W2AZ + W33,
where
AL AZ )3
are the rate parameters for the age bands and
wtw? w3

are the probabilities of the standard age distribution. Since A, % and
A% have independent log likelihoods, we can use the ideas introduced in
section 13.4 and Appendix C to derive a Gaussian approRimation to the
profile log likelihood for the standardized rate. The most likely value is

Wiml + w2mM? + wiMs3

where M! = D'/Y? is the most likely value of the age-specific rate pa-
rameter in band 1, and similarly expressions hold for bands 2 and 3. The
standard deviation of the Gaussian approximation is

VWIS 1 (W282)2 + (W353)2

where S = v/D!/Y! is the standard deviation of the Gaussian approxima-
tion to the log likelihood for A!, again with similar expressions for bands 2
and 3.

For the THD and energy example the proability weights are

wl=w?=w3=0.333.

The age-specific rate for the first age band of the exposed group is 6.41 and
the corresponding standard deviation is

V/2/311.9 = 0.00453,

or 4.53 per 1000 person-years. The most likely values for the rates in the
other two age bands are 13.67 and 20.97 with standard deviations 3.94 and
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5.61 per 1000 person-years. The standard deviation of the standardized
rate is therefore

/(0.333 x 4.53)2 + (0.333 x 3.94)2 + (0.333 x 5.61)2 = 2.74

per 1000 person-years.

Exercise 14.2. Show that the standard deviation of the standardized rate for
the unexposed group is 1.63 per 1000 person-years.

LOG TRANSFORMATION OF STANDARDIZED RATES

Just as for any other rate, Gaussian approximations to the log likelihood are
more accurate when related to the log of the standardized rate. The most
likely value on the log scale is, of course, just the log of the standardized
rate, and the corresponding standard deviation can be calculated by using
the rule described in Chapter 9. There we saw that the standard deviation
of the Gaussian approximation to the likelihood for log()) is obtained from
the standard deviation of the Gaussian approximation to the likelihood for
A by multiplying by 1/M, where M is most likely value of A\. It follows
that for the example of energy intake and IHD incidence, the standard
deviations of the standardized rates on a log scale are 2.74/13.67 = 0.200
and 1.63/6.50 = 0.251.

A simple extension of the same ideas allows us to calculate estimates
and confidence intervals for the ratio of two standardized rates. The log
of this ratio is equal to the difference between the logarithms of the two
standardized rates, and from section 13.4 and Appendix C the standard
deviation of the log of the ratio of the standardized rates is

1/(0.200)2 + (0.251)2 = 0.321.

This can be used to obtain a confidence interval for the ratio of the stan-
dardized rates by using the error factor

exp(1.645 x 0.321) = 1.696.

Exercise 14.3. Use this error factor to find an approximate 90% confidence
interval for the ratio of the two standardized rate parameters.
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Solutions to the exercises

14.1 The estimated standardized rates are
(0.2 % 6.41) + (0.5 x 13.67) + (0.3 x 20.97) = 14.41
for the exposed group, and
(0.2 x 6.58) + (0.5 x 3.93) + (0.3 x 9.00) = 5.98

for the unexposed group.

14.2 The standard deviations of the age-specific rates are 3.29, 1.76, and
3.18 respectively. The standard deviation of the standardized rate is

/(0.333 x 3.20)% + (0.333 x 1.76)2 + (0.333 x 3.18)% = 1.63.

14.3 The ratio of standardized rates is 13.67/6.50 = 2.10 and the 90%
range for this is from 2.10/1.696 = 1.24 to 2.10 x 1.696 = 3.56 .




-

15
Comparison of rates within strata

15.1 The proportional hazards model

Direct standardization is a very simple way of correcting for confounding
but it does have some limitations. This chapter deals with the alterna-
tive and more generally useful approach of stratification. We shall again
illustrate our argument using the study of the relationship between en-
ergy intake and IHD first introduced in Chapter 13 and further analysed
in Chapter 14. There, in Table 14.1, we showed the data stratified by
10-year age bands and demonstrated that the low energy intake group is,
on average, rather older. This might explain some, or all, of the increase
in THD incidence rate. The method of direct standardization predicts the
marginal rates for energy intake groups with the same standard age dis-
tribution. This chapter explores the alternative approach which compares
age-specific rates within strata. Table 15.1 extends Table 14.1 by calculat-
ing rate ratios within each age band. This demonstrates the main prob-
lem with this approach to confounding; holding age constant and making
comparisons within age strata leads to variable and unreliable estimates,
because the age-specific rates are based on so few data.

This problem is resolved is by combining the age-specific comparisons
from the separate strata, but any such procedure carries with it a further
modelling assumption, because combining the age-specific comparisons can
only be legitimate if we believe that they all estimate the same underlying
quantity. If we are prepared to believe that the rate ratio between exposure

Table 15.1. Rate ratios within age strata

Exposed Unexposed
(< 2750 kcal) (= 2750 kcal) Rate
Age D Y Rate D Y Rate ratio
40-49 2 311.9 6.41 4 6079  6.58  0.97
5
8

50-59 12 878.1 13.67 12721 393  3.48
60-69 14 667.5 20.97 888.9 9.00 2.33

Total 28 1857.5 1507 17 2768.9 6.4  2.45
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groups is.constant across age-bands, the evidence from the three bands can
be brought together to provide a single estimate of the (constant) age-
specific rate ratio. Of course the model on which the estimate is based, like
all models, is open to question and in later chapters we shall discuss ways

in which we can test whether it holds. For the present, we shall be content,

to believe that the model holds in our example, and that the fluctuation
of age-specific rate ratios in Table 15.1 is no more than we would expect
given the small numbers of cases in each age band.

" Qur notation follows naturally from earlier chapters. The age bands are
indexed by the superscript £ and exposure groups are indexed by subscripts,
so that A§ and A} are the rate parameters in age band ¢ for the unexposed
and exposed subjects respectively. We shall write the rate ratio parameter
as 0, so that the model of constant rate ratio may be written

)\t
A—%:G.

This is called the proportional hazards model. The parameter  is called
the rate ratio for exposure controlled for age, sometimes abbreviated to the
effect of exposure controlled for age. In this chapter we discuss how 6 can
be estimated.

15.2 The likelihood for 6

When the rate ratio is constant across age bands, we can replace the rate
parameters A% by #)5. In our example, this reparametrization replaces the
original six rate parameters, which we assume to be constrained to obey the
proportional hazards model, with four parameters which are free to take
any positive value. One parameter, namely the rate ratio 6, is our prime
interest, and the remaining three are regarded as nuisance parameters.

Since each age band serves as an independent study, it is a simple
matter to write down the log likelihood. for a stratified comparison. Con-
structing the log likelihood using the prospective argument, each age band
contributes a term which depends upon 8 and the appropriate A5. The
total likelihood is obtained by adding these terms over age bands. For
comparing rates between exposed and unexposed subjects, the parameters
A} are nuisance parameters. As'in Chapter 13, replacing these by their
most likely value for given @ leads to a profile log likelihood for §. With the
caveat expressed at the end of section 13.3, this log likelihood can also be
justified as a conditional likelihood based on the split of cases within each
stratum.

The log likelihood ratio curve for log(6) in our illustrative example is
shown in Figure 15.1. Using a computer, it is a simple matter to find
the most likely value, M, and to use the curvature of the log likelihood
ratio to compute a Gaussian approximation. In this case M = 0.8697
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Fig. 15.1. Log likelihood ratio for the common rate ratio.

and S = 0.3080, and this approximation is shown as a broken line in the
figure. The most likely value of the rate ratio is exp(0.8697) = 2.386 and
confidence intervals can be calculated using the error factor:

exp(1.645 x 0.3080) = 1.660.

The fact that the high energy-intake group is, on average, slightly younger
than the low energy-intake group is the reason why the estimate of the rate
ratio controlled for age is slightly smaller than the crude rate ratio (2.45).
However, the difference is extremely small. This is not unusual; rather large
differences between exposure groups in important variables are necessary
for the effect of confounding to be appreciable.

Unfortunately it is not possible to calculate the values of M and S by
hand using simple formulae. The computer programs which are used to
carry out such computations are very flexible and allow more complicated
models to be fitted. Accordingly discussion of these will be postponed
until Part II and the remainder of this chapter will deal with methods
which require only a hand calculator.

15.3 A nearly most likely value for 6

‘We saw in Chapter 13 that, in an unstratified analysis, both profile and
conditional arguments led to the Bernoulli likelihood

Dy log(2) — Dlog(l + ),
' ’
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where €, the odds for a case having been exposed, is 1) /Yo. The gradiént
of the curve of log likelihood versus log(6) is

Q

D, —D——
1= P
which, after substituting 8Y;/Y; for Q and rearranging becomes

1
Yo+ 01

where W = 1/(Yy + 6Y1). In a stratified analysis, the log likelihood is the
sum of contributions of each stratum,

> [D¥1og(€) — D*log(1+ Q"))

(D1Yy — 6DoYy) = W (D1 Yo — §DoY1),

and the gradient is similarly constructed by adding up gradient contribu-
tions:
S Wt (DiYs - 6DgYY)
where Wt = 1/(Y¢ + 0Y¢) are stratum weights.
The most likely value of § occurs where the gradient is zero, that is, at

,_ SWDi
> WDV

Since calculation of the weights Wt involves 6, and this equation cannot
be used directly to find the most likely value. However, it can be used
iteratively as follows:

1. guess a value for §, and use this to calculate initial weights;

2. using these, calculate a first estimate of 6;

3. using this new estimate, calculate more accurate weights.

The sequence of calculations may be repeated until there is no change in
the estimate. Computer programs for maximum likelihood estimation use
similar iterative methods of computation.

In practice, the estimate obtained is not very sensitive to changes in
the values of the weights — rather large changes make only a relatively
small difference to the estimate. Additionally, it may be argued that it
is only really important to achieve the closest approximation to the log
likelihood when estimating rate ratios which are fairly close to 1. These
considerations suggest using the weights corresponding to the choice 6 =1,
and to go no further with the calculations. These weights are the reciprocal
of the person-years observations in each age band:

1 1

t _ = .
W TYE+YyE Y
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Use of these weights leads to the Mantel-Haenszel estimate of the rate
ratio*,

> DiYg/Y®
2 DgY/Y®
In this expression, each age band makes contributions of
Div¢ DiYd
t_ Hifg t _ oty
=y F="y

to the top (numerator) and bottom (denominator) of the estimate respec-
tively. The estimate of the rate ratio for age band ¢ is Q*/R* and the
combined estimate of the constant rate ratio is Q/R, where @ = > @ and
R=> R.

Exercise 15.1. Calculate Q* and R’ for each of the three age bands in Table 15.1,
and hence calculate the Mantel-Haenszel estimate of the rate ratio. Compare this
with the most likely value.

15.4 Calculating p-values and confidence intervals

Approximate p-values are most easily calculated using the score test. Since
the log likelihood for # for the age-stratified comparison is the sum of
contributions from each age band, it follows that its gradient, and hence
the score, is the sum of scores for each stratum. Similarly, the curvature
is the sum of the curvatures of the separate contribution of each stratum
so that the overall score variance is the sum of score variances for each
stratum. That is,

U=>Y_ Ut v=> v

Thus to carry out the test we first calculate scores and score variances
for each stratum separately and then sum these over strata to obtain the
total score and score variance. We then compare (U)?/V with the chi-
squared distribution in the usual way. The contribution of stratum ¢ to
the score and score variance are of the same form as given at the end of
section 13.2, namely

Ut=D?! -~ Dt7rt®, Vt = Dirh(1 - 7rt®),

where 75, = Y /Y, the ratio of exposed to total person years.

Exercise 15.2. For our example, what is the p- va.lue for the null hypothesis
that, after controlling for age, the rate ratio is 1.

*In fact Mantel and Haenszel did not propose/ﬂ(zsﬁthod but an extremely similar
one for case-control studies. We shall discuss this in Chapter 18.
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As before, the value of U may be interpreted as the difference between the
number of cases who had been exposed and the number expected under
the null hypothesis, taking into account the age structures of exposed and
unexposed groups.

The calculation of the score variance, V, also allows us to calculate an,

approximate confidence interval around the Mantel-Haenszel estimate. A
Gaussian approximation on the log(#) scale, with

\4
S=4]==.
QR
can be used to calculate an error factor and the approximate confidence
interval in the usual way.t

Exercise 15.3. Calculate the standard deviation, S, of the log Mantel-Haenzsel
estimate for the energy intake data. Use this to calculate a 90% confidence
interval for the rate ratio adjusted for age.

These results are very close to those obtained using a computer program to
find the Gaussian approximation to the log likelihood curve. The computer
method is better in the sense that, as the quantity of data increases, the
approximate interval of support approachs the correct likelihood-based in-
terval, while the Mantel-Haenszel interval remains slightly wider no matter
how much data we collect. The discrepancy is rarely important.

15.5 The log-rank test

Our example in this ch?ﬁter has involved stratification by a time scale,
age, into three rather broad bands. In clinical follow-up studies time is
measured from diagnosis or start of treatment and the incidence of events
may vary rapidly, requiring the choice of narrow bands. This, together with
the fact that choice of bands may introduce an arbitrary element into the
analysis, has led to the popularity of a version of the test in which time
is stratified infinitely finely into clicks, with no click containing any more
than one event. This test is called the log rankt or Mantel-Coz test.
Derivation of this test from that of the previous section is straightfor-
ward. The first thing to notice is that clicks which contain no event (i-e.
with D* = 0) make no contribution either to the score, U, or the score vari-
ance, V. We therefore need only consider those clicks in which we observe
the occurrence of an event in one of the gr&m/:f) These are are

TThis approximation is not widely known, but it would not appropriate to justify it
here. Tt suffices to say that it is adequate for all our purposes.

1This nomenclature may seem rather obscure, since the calculation of the test requires
neither logarithms or ranks! It arises from an alternative derivation.
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Table 15.2. Survival times in two groups of patients
Group Time (days)
Test treatment  86,99*,119*,123*,139*,161*, 185*, 212*, 231, 253*,
(V = 20) 262*, 281*,303*, 355, 360, 380*, 392,467*, 499*, 514*
Control 73,91,102%,120%, 135, 160%, 194, 202*, 209*, 220*,
(N = 20) 252,270*,296,330*, 347*,375%, 390*, 414, 475*, 485*

known as informative time points.S Since each click is very short, we need
not consider variation in the time spent by different subjects in the band,
and the null probability that a failure was exposed becomes

. N{ Number of exposed subjects in study at time ¢

Ty = — =
@ Nt Total number of subjects in study at time ¢

Each failure makes a contrlbutlon to the score of the dlﬁerence between the

the expected number, w] which is sunply 7t To-
by adding the contributions T

The score variance is obtalned

V= b (1 — ).

Exercise 15.4. Table 15.2 shows times between entry to a clinical trial and
relapse for patients receiving two methods of therapy. (The data are only illus-
trative — a real trial with so much censoring would need to be much larger than
this!) The times marked with an asterisk represent times at which observation
ceased without occurrence of relapse. Construct a table showing the times of
occurrence of relapses, the number of patients in each group under study at each
of these times, and the corresponding observed and expected relapses in the test
group. Use this table to carry out the score test.

15.6 Comparison with reference rates: the SMR

An important special case concerns the comparison of age-specific rates in
a study cohort, A*, with those in a reference population, which we shall
denote by Af,. We have discussed this informally in Chapter 6. A more
formal treatment follows as a simple case of the methods discussed above.

The proportional hazards model holds that the ratio of age-specific rates
in the study cohort to the reference rates is constant across age bands,

8Since clicks have no duration, we assume that no more than one event occurs at any
time point.
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If we-observe D* failures in Y'¢ person years of observation in each age band
of the cohort, the log likelihood contribution is

Dtlog()?) — \fY?
and making the substitution A* = A% this becomes
D*log(6) + D log(\%) — OALY®.

Since the reference rates A% are calculated from very large populations, they
are effectively known constants, and the above log likelihood depends onty
on one unknown parameter, §. The second term in the log likelihood does
not depend on # and can be ignored, and the third term may be sir.npliﬁed
after noting that ALY"* is the expected number of failures o_btalned by
multiplying the age-specific reference rate by the correspondu.lg person-
years of observation of the study cohort (see Chapter 6). Denoting this by
E?, the log likelihood contribution of one age band becomes

D% log(6) — 0E*
and summation over age bands leads to the total log likelihood
Dlog(6) — 6F,

where D, F are the total observed and expected numbers of failures. This
is a Poisson log likelihood, but the rate ratio parameter 6 replaces the rate
parameter A, and the expected number of failures F replaces the person-
years Y. Thus estimating 6 in this case is just the same as estimating
a rate. The most likély value is the ratio of observed to expected cases,
D/E, and in epidemiology this is called the standardized mortality ratio,
or SMR. A 90% confidence interval can be calculated using the error factor

/1
exp (1.645 5) .

An approximate p-value for the null hypothesis § = 1 can be carried out
using the score and score variance -

Comparison of rates with reference rates in this way is known in epidemi-
ology as indirect standardization.

Exercise 15.5. In the follow-up study of ankylosing spondyliti.s patients d%s—
cussed in Chapter 6, the observed number of deaths from leukaemia was 31 while
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the expected number calculated from reference rates was 6.47. Calculate the 90%
confidence interval for the common ratio of cohort age-specific rates to reference
rates. Also calculate an approximate p-value for the null hypothesis 8 == 1.

Exercise 15.6. The calculation of the expected number of deaths in the anky-
losing spondilitis study was based on person-years classified by both age and
calendar period (see Chapter 6). What further modelling assumption is formally
necessary to justify the analysis carried out in the previous exercise?

' 15.7 Comparing standardized rates

We showed in Chapter 14 that standardized rates estimate the marginal
rates when the age distributions are corrected to a common standard.
These are weighted sums of age-specific rates. In the case of three age
bands, the marginal rate is

W1A1+W2)\2+W3>\3

where (W', W2, W?3) are the relative frequencies of the three age bands in
the standard distribution, and the ratio of two marginal rates, corrected to
the same age distribution, is

WA +W32A2 4 W3NS
WIN +W2AZ + W3S

When the proportional hazards model holds, every term in the numerator
of this expression is @ times the corresponding term in the denominator, and
it follows that the ratio of marginal rates will also be 8 — the relationship
between marginal rates is the same as that between the conditional (age-
specific) rates. Thus, the ratio of standardized rates can be used as an
estimate of §. However it may not be a very good estimate if the standard
age distribution gives high weight to age bands with few failures.

Note that the equivalence demonstrated above between the conditional
and marginal comparisons does not hold for all stratification models. For
example, if the ratio of the age-specific odds of failure for exposed and
unexposed subjects is a constant, 8, for all ages then the ratio of marginal
odds is not equal to 4, even when there is no confounding and the age
distributions are identical. Thus we cannot always rely on the method of
direct standardization if we are interested in comparisons within strata. In
Chapter 18 we shall encounter an important example of this.

15.8 Comparison of SMRs

Although the ratio of standardized rates can be used as an alternative
estimate of 6, there has been some controversy as to whether the ratio of
two SMRs can also be used in this way.
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An understanding of the formal model which lies behind indirect stan-
dardization clarifies this argument. Calculation of an SMR for an exposed
cohort, using reference rates AL implies the model

A= G0,

where 6; is the constant ratio of rates in this cohort to reference rates.
Similarly, calculation of an SMR for an unexposed cohort implies the model

A= o),

A direct consequence of these two models is that the ratio of rates for
the two cohorts is also constant across age. This can be demonstrated by
simply dividing the two equations, when AL cancels leaving

M6

X6

Thus if the age-specific rates for both exposed and unexposed cohorts are
proportional to the reference rates, the comparison of SMRs is legitimate.
Since the likelihoods for §; and 8y are Poisson in form, with expected
numbers of failures E; and Ej replacing person-years observation Y; and
Y,, the likelihood for their ratio, 6, is the same as for the rate ratio in
Chapter 13.

This method, however, relies on the assumption that both sets of age-
specific rates are proportional to the reference rates. If they are propor-
tional to each other, but not to the reference rates, then the ratio of SMRs
will not correctly estimate the rate ratio 6. Because of this additional as-
sumption concerning reference rates, estimation of d by the ratio of SMRs
is not usually to be recommended.

Solutions to the exercises

15.1 The calculations are as follows:
Age Qt R
40-49 2 % 607.9/919.8 =132 4 x 311.9/919.8 = 1.36
50-59 12 x 1272.1/2150.2 =7.10 5 x 878.1/2150.2 = 2.04
60-69 14 x 888.9/1556.4 =8.00 8 X 667.5/1556.4 = 3.43
Total 16.42 6.83

The Mantel-Haenszel estimate is 16.42/6.83 = 2.40 while the most likely
value is 2.39.

15.2 The score is:

311.9 878.1 667.5
v= (2 0 ) * (12 - 172150.2) * (14 -2 1556.4)
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= 28-1841
= 9.59

and the score variance is

311.9 x 607.9 878.1 x 1272.1 667.5 x 838.9
Vo= gx e XD g, SO X 212D £o7.0 x 8899
P98 X T aisae 22X (15564
— 13444114539
10.84.

The chi-squared value (1 degree of freedom) is (9.59)2/10.84 = 8.48 and
P < 0.005.

15.3 The standard deviation for the approximation is

Iy Ay ——
QR V1642x6.83 U7

The error factor for the 90% confidence interval is exp(1.645x0.311) = 1.67,
and recalling that the Mantel-Haenszel estimate was 2.40, the confidence
limits are 2.40/1.67 = 1.44 (lower limit) and 2.40 x 1.67 = 4.01 (upper
limit).

15.4 The times at which events occurred, the numbers of patients under
observation, and the observed and expected relapses in the test group are
shown below.

t NI N: N' Dt B
73 20 20 40 0 20/40 = 0.50
8 20 19 39 1 20/39=0.51
91 19 19 38 0 19/38=0.50
135 16 16 32 0 16/32=0.50
194 13 14 27 0 13/27=048
231 12 10 22 1 12/22=0.55
0

0

1

0

252 11 10 21 11/21 = 0.52
206 8 8 16 8/16 = 0.50
32 4 3 7 4/7 = 0.57
414 3 3 6 3/6 = 0.50

The overall score is

U=3-(.50+.51+.50+--- 4 .57+ .50) = —2.13
and the score variance is

V = (.50 x .50) + (.51 x .49) + - - - + (.50 x .50) = 2.49.
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The score test is (U)2/V = 1.82 and p > 0.10. This test is the score test
for 8 = 1 in the proportional hazards model which holds that the ratio of
the relapse rates of the two treatments is constant (at ¢) regardless of time
since entry into the trial.

15.5 The most likely value of 8 is the SMR,

31
647 = 4.791.

[1
1.6454/ — | = 1.
exp < 6 31> 1.344,

s6 that the 90% confidence interval is from 4.791/1.344 = 3.56 to 4.791 x
1.344 = 6.44.
The score test is

The error factor is

(31 — 6.47)?

64T = 93.00

and p < 0.001.

15.6 Follow-up was stratified by both age and calendar period when cal-
culating the expected number of deaths. The model which underlies the
above analysis therefore assumes that the ratio of rates in the ankylosing
spondilitis cohort to those in the reference population is constant for all
ages and for all calendar periods.
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Case-control studies

In a cohort study, the relationship between exposure and disease incidence
is investigated by following the entire cohort and measuring the rate of
occurrence of new cases in the different exposure groups. The follow-up
allows the investigator to register those subjects who develop the disease
during the study period and to identify those who remain free of the disease.
In a case-control study the subjects who develop the disease (the cases) are
registered by some other mechanism than follow-up, and a group of healthy
subjects (the controls) is used to represent the subjects who do not develop
the disease. In this way the need for follow-up is eliminated: If there is
no relationship between exposure and disease incidence the distribution of
exposure among the cases should be the same as the distribution among
the controls.

Historically the aim of case-control studies was limited to testing for
association between exposure and disease. Often little thought went into
the selection of. control groups, or even of cases to be studied. Frequently,
studies were carried out using whatever cases could be traced from medi-
cal r(l\elf'gfhafc/agi en centre. In this rather careless climate, case-control
studies into distépute. However, it is now understood that properly
conducted case-control studies allow quantitative estimates of exposure ef-
fects and this discovery has clarified the fundamental assumptions of the
method. It has also contributed to a clearer understanding of the design of
case-control studies issues and to a considerable improvement in the quality
of studies. o

We shall look first at estimating exposure effects and then consider how
best to select controls. In the last section of the chapter there is a brief
account of some of the difficulties which arise when case-control studies are
based on prevalent rather than incident cases.

16.1 The probability model in the study base

Every case-control study of incidence can be seen within the context of an
underlying cohort which supplies the cases on which the case-control study
depends. A useful terminology refers to this underlying cohort, observed
for the duration of the study, as the study base.

To estimate the quantitative relationship between exposure and disease
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)

incidence we need to look more closely at what is happening in the study
base. Consider the simple situation where the study base is divided into
two groups, unexposed and exposed, and let g, 7, be the probabilities that
a member of the unexposed or the exposed group will fa.ll over the period
of the study and become a case.

The branches in the probability tree shown in Fig. 16.1 refer to the

different possibilities for a randomly chosen member of the study base, and
the events are taken in order of occurrence. The first branching of the
tree refers to exposure. The subject may have been exposed (E+), or not
(E—); we have taken the probability that a subject was exposed as 0.1, for
illustration. The next branching refers to failure. The subject may fail (F),
or survive (S); these are the probabilities already referred to as m; for the
exposed group and 7y for the unexposed group. The final branching refers
to whether the subject is selected into the study or not; for illustration we
have chosen a probability of 0.97 that a failure is registered and therefore
included as a case, and a probability of 0.01 that a surviving subject is
selected as one of the sample of controls. Note that the probability that a
failure is registered is assumed to be the same for both exposure groups,
and the probability that a healthy subject is chosen as a control is assumed
to be the same for both exposure groups. ’

There are 8 possible outcomes for a member of the study base, corre-
sponding to the 8 tips of the tree, but only 4 of these appear in the study.
The four outcomes corresponding to the case-control study are: exposed
cases, exposed controls, unexposed cases and unexposed controls. The
numbers of subjects in these categories are referred to as Dy, Hy, Dy, Hy,
respectively, where D refers to cases, H to healthy controls, and the suf-
fices 1 and 0 refer to exposed and unexposed. The probabilities of the four
outcomes appearing in the case-control study are calculated by multiplying
conditional probabilities along the branches, and are shown to the right of
the figure.

The estimation of the disease exposure relationship in the study base
from the results of the case-control study may be approached using either
a retrospective conditional argument or a prospective conditional argument.
These correspond to two different ways of reorganizing the probability tree.

16.2 The retrospective probability model

In this argument we re-express our model as a model for the conditional
probabilities of exposure given that the subject was a case (F) or a control
(8). The reordering of the probability tree to reflect this argument is shown
in Fig. 16.2. We define the parameter Q; as the odds of having been exposed
for a case. From Fig. 16.2, 0 is related to the odds of failure in the study
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Exposure Failure Selection Probability
Case
. 0.97 (Dl) 0.1 x T X 0.97
T F
0.03
E+
0.1 Control _
< (Hy) 0.1 x (1 —m) x0.01
1— T
Case
(DO) 0.9 x o X 0.97
)
0.9
E—
Control
< (Ho) 0.9 x (1 —mo) x 0.01
1—mo

Fig. 16.1. The probability model in the study base.

base by the equations

01><7T1><097 0.1 71'1

0 - -
1= 00 xm =007 09"

The value of ©; can be estimated by D; /Do, the ratio of exposed to unex-
posed cases. Similarly, we define Qg as the odds of a having been exposed
for a control. From Fig. 16.2,

0.1 x (1 ~m) x0.01 —Ex 1-m
09x(1-m)x001 09 1-m’

Q=

and the value of (g can be estimated by H; /Ho, the ratio of exposed to
unexposed controls. Finally the odds ratio

Ql _ 7T1/(1—7T1)

QO - 7'{'0/(1 - 7T0)
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Selection Failure Exposure ~ Probability
E+ 0.1xm x0.97

F (Cases)
E- 0.9 x mo x 0.97

B+ 0.1 x (1 —m) x0.01
S <ontrols)
Not in study E- 0.9 x (1 — mo) x 0.01

Fig. 16.2. The probability tree for the retrospective argument.

can be estimated by
D;1/Dy
H,/Hy

Thus although it is not possible to estimate 7y and m; separately from a
case-control study it is possible to estimate the odds ratio.

EXAMPLE: BCG VACCINATION AND LEPROSY

The data in Table 16.1 are from a rather unusual exambple of a case-control
study in which the controls were obtained from a 100% cross-sectional
survey of the study base.* The aim of the study was to investigate whether
BCG vaccination in early childhood, whose purpose is to protect against
tuberculosis, confers any protection against leprosy, which is caused by a
f:losely related bacillus. New cases of leprosy reported during a given period
in a defined geographical area were examined for presence or absence of
the characteristic scar left by BCG vaccination. During approximately the
same period, a 100% survey of the population of this area had been carried
out, and this survey included examination for BCG scar. The tabulated
data refer only to subjects under 35, because persons over the age of 35 at
the time of the study would have been children at a time when vaccination
was not widely available.

AY

*From Fine, P.E.M. et al. (1986) The Lancet, August 30 1986, 499-502.
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Table 16.1. BCG scar status in new leprosy cases and in a healthy
population survey

BCG scar Leprosy cases Population survey
Present 101 46028
Absent 159 34594

Table 16.2. A simulated study with 1000 controls

BCG scar Leprosy cases Population survey
Present 101 554
Absent 159 4486

Exercise 16.1. Estimate the odds of BCG vaccination for leprosy cases and for
the controls. Estimate the odds ratio and hence the extent of protection against
leprosy afforded by vaccination.

This example provides a good illustration of the potential economy
of the case-control approach. Here a population survey was available for
control but had it not been there would have been no need to carry out
such a large-scale exercise. The precision of the odds ratio estimate is
dominated by the precision of the odds for BCG scar among the 260 leprosy
cases. Perhaps 1000 suitably chosen controls would be enough to estimate
the corresponding odds among healthy subjects— there is little gain in
precision to be obtained by using 80 000!

Exercise 16.2. Table 16.2 shows the results of a computer-simulated study
which picked 1000 controls at random. What is the odds ratio estimate in this

study?

16.3 The prospective probability model

In this argument we re-express our model in terms of the conditional prob-
abilities of failure given selection into the study and given exposure status.
The re-ordering of the conditional probability tree to reflect this argument
is shown in Fig. 16.3. Define the parameter w; as the odds of being a case
for exposed subjects. By the odds of being a case we mean

Probability of failure given that the subject is in the study
Probability of survival given that the subject is in the study

From Fig. 16.3

Wy = O.1X7I'1XO.97 —097X ™
'T0Ix(1—=m)x001 001 1-—m’
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Selection  Exposure Failure Probability
F 0.1 xm x0.97
E+
s 0.1 x (1 —m) x0.01
F 0.9 x o x 0.97
E—-
Not in study S 0.9 x (1 —mo) x 0.01

Fig. 16.3. The prospective probability model.

and this can be estimated by the case/control ratio among exposed sub-

jects, Di/H,. Similarly the odds of being a case for unexposed subjects
is

— 0.9 x o X 0.97 _ 0.97 o
09X (1—m) x0.01 001  1—mg’

?vhich can be estimated by the case/control ratio among unexposed sub-
jects, Do/Hyp. Finally, the odds ratio .

wWo

wi _ m /(1 —m)
wog mo/(1—mg)’
can be estimated by
D, /H,;
Do/Hy'

This is the same estimate as that obtained from the retrospective approach

since
Di/Dy  Di/H, D H,

Hi/Hy  Do/Hy,  DoH;

16.4 Many levels of exposure

In the retrospective argument it is the exposure status which is the re-
sponse (outcome variable); in the prospective argument it is the disease
status which is the response. The retrospective argument is more natural,
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E0 F

E0 <

E1 s

F E2 ' F
El <

E3 s
E4 F

E2 <

E0 s
El F

E3 <

s E2 s
E3 F

E4 <

(a) Retrospective model (b) Prospective model

Fig. 16.4. Five exposure categories.

but the prospective argument leads to the same answers and is more con-
venient when studying exposures with many levels. This is illustrated by
Fig. 16.4, which shows probability trees for both arguments when there are
5 exposure categories. Disease status is indicated by F (for cases) or S (for
controls) and the 5 exposure categories are labelled EO to E4. To construct
a likelihood using the retrospective likelihood we must use a probability
model for a response with 5 possible outcomes, but the prospective ar-
gument only requires the binary probability model. The odds of being a
case for subjects in exposure category 4 is a constant multiple of the corre-
sponding odds of failure in the study base; with the selection probabilities
assumed in Fig. 16.1, :
__m 09

T 1l-m 0 0.01°

As the complexity of the exposure grouping increases, the retrospective
probability model must become ever more complex, while the prospective
model remains binary.

As an example of an exposure with more than two levels we shall look
at a famous study carried out in the middle of the nineteenth century by
William Guy.! This was possibly the first case-control study. The level of
physical activity of the occupations of pulmonary tuberculosis outpatients
(cases) was compared with that of other outpatients (controls). The data

Wy

TFrom Guy, W.A. (1843)» Journal of the Royal Statistical Society, 6, 197-211.
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Table 16.3. Physical exertion at work of 1659 outpatients

Level of Pulmonary Other Case/
exertion in  consumption- diseases  control Estimated

occupation (Cases) (Controls) ratio  odds ratio
Little 125 385 0.325 1.64
Varied 41 136 0.301 1.52
More 142 - 630 0.225 114
Great 33 167 0.198 . 1.00

Table 16.4. Alcohol and tobacco use by oral cancer cases and (controls)

Alcohol Tobacco (cigarette equivalents per day)
(0z/day) 0 1-19 20-39 a0+
0 10 (38) 11 (26) 13 (36) 9 (8

01-03 7 (27) 16 (35 50 (60) 16 (19)
04-15 4 (12) 18 (16) 60 (49) 27 (14)
1.6 + 5 (8) 21 (20) 125 (52) 91 (27)

are shown in Table 16.3. There are four levels of exposure corresponding to
different levels of activity and the table shows the ratio of cases to controls.
Each of these case-control ratios estimates some constant times the odds
of failure conditional on exposure level. Since the constant depends on the
probability of registration for cases and selection for controls it will be the
same for all exposure levels and the case/control ratios can be compared
as though they were the odds of failure.

' Looking at the case/control ratios in this way, they suggest that there
Is a steady increase in the odds of failure (and hence the incidence rate)
w1t‘h decreasing level of physical activity. The table also shows odds ratio
e§t1mates with the ‘great’ activity category taken as reference. By defini-
tion, the odds ratio for this reference category is 1. The natural choice
of reference category is the one with lowest exposure to adverse factor.
In some cases, however, the natural reference category might contain very
few cases and controls, leading to poor estimation of all the odds ratios;
another reference category should then be chosen. ,

Exercise 16.3. Table 16.4 shows the distribution of 483 cases of oral cancer by
level of alcohol consumption and level of tobacco consumption, together with the
corresponding distribution for 447 controls.! Calculate the case/control ratios
and describe the joint action of the two exposures. ,

716¢F‘tom Rothman, K.J. and Keller, A.Z. (1972) Journal of Chronic Diseases, 23, T11—

INCIDENCE DENSITY SAMPLING 161

16.5 Incidence density sampling

We saw in Chapter 1 that, when the probabilities of failure are small, the
risk and odds parameters are approximately equal. In these conditions, we
showed in Chapter 5 that the risk parameter is also approximately equal
to the cumulative rate, At. It follows that

m/(l—m) _ T AL
mo/(1—m) mo Ao

for rare events. These ratios are known as the odds ratio, the risk ratio, and
the rate ratio, and the condition for these to be approximately the same
is usually described as the rare disease assumption. Taken together with
the arguments developed in this chapter, we see that the odds ratio in a
case-control study may be used to estimate the rate ratio in the underlying
study base. There are two additional assumptions in this argument:

1. all subjects in the base are observed from the beginning of the study
period, that is, there are no late entries;

2. all subjects who do not fail from the cause of interest will remain
under observation until the end of the study period, that is, there is
no censoring.

In practice, these assumptions are more likely to be violated than the rare
disease assumption.

All of these assumptions can be guaranteed by the simple device of se-
lecting a short enough study period. If insufficient cases would be obtained
from such a study then the remedy is simple — carry out several consecutive
short studies. The subjects remaining in the base at the end of one study
immediately enter the next study. Each study then provides a separate
estimate of the rate ratio, and provided this ratio remains constant over
the whole study period, the information can be aggregated using methods
very similar to those discussed in Chapter 15:

Taken to the limit, the total time available for the study may be divided
into clicks which contain at most one case. Those clicks in which no case
occurs are not informative so there is no purpose in drawing controls, but
controls are drawn for all clicks in which a case occurs. Thus one or more
controls are drawn from the study base immediately after the occurrence
of each case. This design is termed incidence density sampling.

A study carried out in this way involves matching of controls to cases
with respect to time. Methods for stratified case-control studies will be
discussed in Chapter 18, but in the special case where the ratio of exposed
to unexposed persons in the study base does not vary appreciably over the
study period, it is legitimate to ignore the matching by time during the
analysis.
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One practical problem with this sampling method is that it is possible
for the same individual to be included in the study more than once. For
example, a control drawn at one point in time may later become a case
or may be selected as a control a second time. Is it legitimate to carry
out analyses which count the same person more than once? In Chapter 4
we saw that a single subject observed through several consecutive time
bands can be treated as a series of different subjects, one for each band.
In exactly the same way, in a case-control study it turns out to be correct
to allow subjects to be sampled again in later time bands and treated as
independent controls.

16.6 Nested case-control studies and case-cohort studies

An important use of incidence density sampling is in nested case-control
studies, where case-control analysis is used in cohort studies. This is an
attractive option whenever the assessment of exposure of any subject is, for
some reason or other, expensive. For example, in dietary studies, individual
diet may have been assessed by very detailed diary records of food intake,
perhaps referring to several periods of time. The coding and transcription
of such records for computer analysis is laborious and expensive. Much of
this work is avoided in a nested case-control study by coding these records
only for cases, as they occur, and for groups of controls drawn for each
case. Since there is (usually) little to be gained by drawing more than five
controls for each case, there are considerable savings to be made by such
a strategy. We shall discuss the design and analysis of nested case-control
studies in Chapter 33.

In recent years some authors have suggested that there are sometimes
practical advantages in selecting controls by taking a single random sample
of the cohort at the beginning of the study. This type of study has been
termed a case-cohort or case-base study. If the disease is rare and there is
little loss to follow-up, then the analysis may be carried out as usual, after
first removing from the control sample any individuals who later became
cases. However, if stratification by time becomes necessary the analysis is
more difficult.

16.7 Selection bias

Qne important reason for obtaining wrong answers from case-control stud-
ies is incorrect sampling of controls (or cases) from the study base. This is
called selection bias. It should be clear from this chapter that case-control
studies will only yield unbiased estimates of

71'1/(1 — 71'1)
mo/(1 — o)
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if the selection probabilities for both cases and controls do not vary between
exposure groups. Selection bias occurs when this is not true.

A study can only be truly convincing in this respect if its base is closely
defined. The type of study with the best defined base is a nested case-
control study, in which the study base consists of a documented and closely
traced cohort. This method has proved particularly useful in occupational
studies, where employment records identify an underlying cohort and pen-
sion schemes provide a mechanism for long term follow-up.

In a geographically based case-control study the base is defined by res-
idence in a particular geographical area during the period of study. Al-
though all such individuals are not specifically identified, it may never-
theless be possible to carry out a study in such a way that all cases are
registered and controls drawn in a manner unrelated to exposure. Such
studies require complete registration of disease in the study area, including
capture of resident cases diagnosed and treated elsewhere. Control selec-
tion may also be difﬁcult,(since few countries have accurate and accessible
population registers. "

Another important base for case-control studies is the patient list of the
family doctor. These lists offer good possibilities for representative control
selection and for complete registration of cases particularly when, as in the
United Kingdom, access to all medical services is channelled through the
family practitioner.

For reasons of economy and convenience, a common choice is the hospital-
based case-control study in which the case series is made up of all new cases
presenting at one or more hospitals during the period of the study. Here the
study base consists of the catchment population comprising all those per-
sons who would have attended these hospitals if they had developed disease
during this period. This is ill defined and it is difficult to demonstrate con-
vincingly that the probability of control selection from the study base is
independent of exposure. The device of using other patients, attending for
unrelated conditions, has two clear difficulties:

1. catchment populations for different specialities in the same hospital
do not necessarily coincide, and

2. patients who are sick with other diseases are not necessarily repre-
sentative of the population of persons free of the disease of interest.
In particular, factors associated with increased risk of these diseases
may appear to be protective against the disease of interest simply
because they are over represented in controls.

. Against these difficulties must be set the claim that recall bias and other

forms of differential exposure misclassification may be reduced when both
case and control groups are hospital patients.

Two further points should be made briefly before concluding this sec-
tion. First, matching is extremely useful in avoiding selection bias although
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its use is more frequently advocated on the grounds of efficiency. We shall
return to this discussion in Chapter 18. Second, it is important to draw
attention to the fact that the best sampling scheme can be invalidated by
poor subject compliance. If a substantial number of potential cases and
controls refuse to participate there is considerable potential for bias as a
result of differential compliance in different exposure groups. All too often
case-control studies do not report compliance, and the potential for such
bias is hard to assess.

16.8 Prevalent cases

If a case-control study is carried out using prevalent cases it is no longer a
study of disease incidence and the odds ratio estimate cannot be interpreted
as an estimate of a ratio of incidence rates. However, such studies can be
used to study relationships of exposures to the prevalence of disease.

If the cases can be considered a random sample of those with disease
in the population, and controls can be considered a random sample of the
healthy section of the population, then the odds that a case was exposed
divided by the odds that a control was exposed is an estimate of

Prevalence odds in exposed population
Prevalence odds in unexposed population’

When the prevalence in both groups is low this ratio is approximately equal
to the prevalence in the exposed population divided by the prevalence in
the unexposed population.

The remarks concerning sources of bias in incident case-control studies
apply equally here. In particular, recall bias is a serious problem when in-
terviewing prevalent cases who have been sick and in contact with medical
professionals for some time. However, the main problems of interpretation
are those of interpreting prevalence itself; the odds ratio is affected by fac-
tors which influence the duration for which a case, once diagnosed, remains
in the sampling frame. These include not only factors related to survival,
but factors relating to migration which may be complex and difficult to
quantify.
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Solutions to the exercises

16.1 The estimate of the odds for vaccination in leprosy cases is }01 /159 =
0.635 as compared with 46 028/34 594 = 1.331 in the healthy subjects. The
odds ratio estimate is 0.635/1.331 = 0.48.

16.2 The odds ratio is 101/159

el kg 5
554,446

16.3 The case/control ratios are as follows:
Alcohol Tobacco (cigs. per day)
(oz/day) 0 1-19 20-39 40+
0 0.26 0.42 0.36 1.12
0.1-0.3 0.26 0.46 0.83 0.84
0.4-1.5 033 113 1.22 193
1.6 + 0.63 1.05 2.40 3.37

Because the frequencies in the table are small, there is I.nuch random vari-
ation, but there is an overall tendency for the ratios to increase both 'fr(.)m
left to right along rows, and from top to bottom down columns. Th1.s in-
dicates that both.variables have an effect on cancer incidence; there is an
effect of tobacco when alcohol intake is held constant, and vice versa.
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Likelihoods for the odds ratio

The data from a simple case-control study (exposed and unexposed) can
be arranged as a 2 x 2 table such as that set out in Table 17.1. We saw
in Chapter 16 that there are two ways in which the probability model for
a case-control study can be set up but that, for both models, the ratio of
odds parameters are equal to the ratio of odds of failure in the study base.

17.1 The retrospective log likelihood

As in Chapter 16, we write Qg for the odds of exposure among controls,
and €, for the odds of exposure among cases. Our interest is in the odds
ratio parameter 6 = 2, /g, so we change from the parameters Qg and Q,
to the parameters Qo and 6, and regard Q as a nuisance parameter. The
total log likelihood is the sum of the log likelihood for 29 based on the split
of the H controls between exposed and unexposed, and the log likelihood
for ©, (= 0€Q0) based on the split of D cases,

Hylog($20) — Hlog(1+ Q) + D;log(69%) — Dlog(1 + 69%).

To use this log likelihood for estimating of the odds ratio 0, we form a
profile log likelihood by replacing Q by its most likely value for each value
of . Unlike the profile log likelihood for the rate ratio in cohort studies,
this curve cannot be expressed as a simple algebraic expression, but the
results of section 13.4-and Appendix C can be used to derive a Gaussian
approximation.

This derivation follows from the fact that the log odds ratio is the dif-
ference between two log odds parameters,

log(8) = log(€;) — log(Q).
Table 17.1. Notation for the 2 x 2 table

Exposure Cases Controls Total subjects

EXpOSBd D1 H1 N] = D1 -+ H1
Unexposed Dy Hy Ny=Dy+ H,y
Total D H N=D+H

THE RETROSPECTIVE LOG LIKELIHOOD 167

These are estimated from two independent bodies of data and have most

likely values
Dl (Hl >
= e M = 1 e )
M; =log <D0> , 0 = 108 H,

and standard deviations
1 1 1 1
=4/7+ 7 So=4/= + =
Sl Dl + DO, 1] Hl HO

It follows from general results given in section 13.4 and Appendix C that
the most likely value of the log odds ratio is

M = M —M
D, /Dy )
= lo
¢ (Hl/Ho
and the standard deviation of the Gaussian approximation to the log like-
lihood is

S = V(51)?+ (5)?

1 1 1 1
\/D1 o E T H
This can be used to calculate an error factor for the odds ratio and hence
an approximate 90% confidence interval.

The expression for S only differs from that for the rate ratio in a cohort
study by the addition of the two last terms. These are reciprocals of ‘.che
counts of controls and represent the loss of precision incurred by carrying
out a case-control study rather than a cohort study. Once the number
of controls is substantially larger than the number of cases, this loss (?:E
precision becomes negligible. Hence the common assertion that there is
little to be gained by drawing more than four or five times as many controls
as cases.

Exercise 17.1. For the study of BCG vaccination and leprosy discussed in
Chapter 16, calculate the expected result of the study using

(a) the same number of controls as cases;

(b) twice as many controls as cases; and

(c) five times as many control as cases. .
Compare the corresponding values of S with that achieved by using the entire
population as controls.

Carried out algebraically, these calculations lead to the general result that
the ratio of the standard deviation of an estimate from a case-control study
to the standard deviation from a cohort study yielding the same number
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of cases is
V14 (1/m)

where m is the number of controls expressed as a multiple of the number
of cases. When m = 1 this expression shows that the standard deviation
is 1.41 times higher in a case-control study than in a cohort study. When
m = 5 the factor reduces to 1.10 and when m = 10 this reduces only 3 little

more to 1.05. The behaviour of this expression as m increases confirms the.

impression of the last exercise — that there is little gain in efficiency to be
obtained by selecting more than five times as many controls as cases.

THE NULL HYPOTHESIS § = 1

We can calculate an approximate p-value for the null hypothesis using
using any one of the three methods we have encountered earlier. The log
likelihood ratio test is now based on the profile log likelihood. The Wald
test is calculated by comparing the most likely value of the odds ratio with
the null value, log(f) = 0, by calculating

M -0\

5 .
Finally, the score test can be derived using the general relationships set
out in Appendix C. At the null hypothesis the two odds parameters are
equal and their most likely common value is N /Ny. The score, U, is found

from the gradient of the profile log likelihood with respect to log(2) at
this point, which turns out to be

U = Di—-E
~(Dg — Ey),

where

N No

E,=D— =D—
1 N; EO D N

can be thought of as the expected numbers of exposed and unexposed

cases under the null hypothesis. The score variance is obtained from the

curvature of the profile log likelihood at the null value § = 1, which yields

v _ DHNoN,
o)

As usual, an approximate p-value can be obtained by referring (U)?/V to
the chl-squared distribution on one degree of freedom.

A T T T L N demaas

e YUY
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Table 17.2. Tonsillectomy and Hodgkins disease

Tonsillectomy Cases Controls  Total subjects
Positive 90 (D1) 165 (H;) 255 (Ny)
Negative 84 (Do) 307 (Ho) 391 (No)
Total 174 (D) 472 (H) 646 (N)

Exercise 17.2. Table 17.2 shows data from a study of the relationship between
tonsillectomy and the incidence of Hodgkin’s disease.* Calculate the maximum
likelihood estimate of @ with a 90% confidence interval, and calculate a p-value
for 6 = 1.

17.2 The prospective log likelihood

We now turn to the log likelihood we obtain using the prospective proba-
bility model. As in Chapter 16, we write w; for the odds that an exposed
subject is a case, wp for the corresponding odds for an unexposed subject,
and change to (wo,d) where § = w;/wy. The log likelihood is again the
sum of two Bernoulli log likelihood terms,

Dylog(wo) — Nolog(l +wo) + Djlog(fuwp) — Nylog(l + buwo),

and the profile log likelihood is obtained by replacing wo by its most likely
value at each value of 8. As with the retrospective model, this does not
lead to a simple algebraic expression, but the Gaussian approximation can
easily be derived, since

log(9) = log(w1) — log(wo)

and the log likelihoods for log(w;) and log(wg) are based on independent
sets of data. The most likely values of w; and wy are

D
wies () Mo=tes (7).

and the corresponding standard deviations are

11 T 1
= —_— —— S = —_— _—
51 Vo, T °=\Dp, T &,

As before, the most likely value of log(6) is

M = M —-M

*From Johnson, S.K: and Johnson, R.E. (1972) New England Journal of Medicine,
287, 1122-1125.
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log (Dl / Hl)
Do/ Hy
and the standard deviation of the Gaussian approximation to the log like-
lihood is

S = V(S1)*+ (So)2

= \/D1 A D0+_

These results are exactly the same as we obtained using the retrospective
argument. In the same way we can show that the log likelihood ratio
and score tests are identical for the two approaches. Indeed, some further
mathematics shows that the profile log likelihoods for the two arguments
are identical. This continues to be the case for more complex patterns of
exposure and, since the prospective approach is more convenient in these
situations, it is to be preferred.

17.3 The hypergeometric likelihood

Both the probability models discussed above contain a nuisance parameter
in addition to the parameter of interest, §. Both lead to profile log likeli-
hood for § and depend on profile likelihood behaving in the same way as a
true likelihood.

When there is sufficient data, the profile log likelihood does indeed be-
have in this way. However, profile likelihoods are obtained by estimating
the nuisance parameters, and it is only safe to assume that they have the
same properties as true likelihoods if the accuracy of that estimation in-
creases as the total number of subjects increases. If the number of nuisance
parameters increases with the number of subjects, this improved estimation
is not achieved and profile likelihoods can be misleading. This happens in
case-control studies if, as the total number of subjects increases, the study
is divided into an increasing number of small strata in an attempt to deal
with confounding. For either the prospective or the retrospective likeli-
hood it is necessary to introduce a separate nuisance parameter for each
stratum, so the number of parameters will increase with the number ‘of
subjects. The worst case is the individually matched case-control study
in which the number of strata (and nuisance parameters) is equal to the
number of case-control pairs. It turns out that the use of profile likelihood
methods in this situation leads to wrong answers.

An alternative way of eliminating the nuisance parameter is a condi-
tional approach based on a probability model in which both margins of the
2 x 2 table (Table 17.1) are fixed. The set of probabilities for all splits of
subjects which maintain the same marginal totals is known as the hyper-

geometric distribution. For the table shown in Table 17.1, the probability
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is
1 O™
K(0) © D,!Do!H,!Hy!

where K(6) is chosen so that the probabilities for all possible tables with
the same margins add up to one:

K@= Y (6>
- RTNTZATAR
Possible tables Dy!Dy!H, ' Hyp!

This distribution depends only on the parameter § and can be used to cal-
culate exact p-values and confidence intervals for the odds ratio as outlined
in Chapter 12. The use of these methods is illustrated in section 17.4.

The likelihood based on this distribution is called the hypergeometric
likelihood. Because of the function K(#), it is difficult to calculate except
when the number of possible tables consistent with the margins is small.
We shall consider an important special case in Chapter 19 and give a more
general treatment of this likelihood in Chapter 29. For the present we
note that the hypergeometric likelihood does lead to a simple score test for
8 = 1. The score is exactly the same as for the profile log likelihoods, that
is

U=D, - E,

but the score variance ¢can be shown to be

V= DHNyN,
SR -1

This differs from the expression derived from the curvature of the profile
log likelihood by the term (N — 1) in place of N in the denominator.
The difference this makes to the value of the variance is usually negligible.
The one situation where it does make a difference is in matched studies
where the number of subjects in each stratum is very small. In the worst
case of the 1:1 individually matched study, N = 2 in every stratum and
the profile likelihood argument wrongly estimates the score variance by a.
factor of two. We shall, therefore, return to the hypergeometric likelihood
when discussing the analysis of individually matched case-control studies
in Chapter 19.

17.4 Exact methods

The use of the hypergeometric distribution for exact tests and confidence

intervals follows exactly the same principles as set out in Chapter 12. This
is illustrated in this section using some data drawn from a case-control
study set up to investigate an excess of childhood leukaemia cases in the
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Table 17.3. Paternal radiation exposure in leukaemia cases and controls

Paternal Leukaemia  Local 5
exposure cases controls Total
> 100 mSv (Exposed) 3 1 4
< 100 mSv (Unexposed) 1 19 20
Total 4 20 24

Table 17.4. Hypergeometric log likelihood ratios and probabilities

LLR Hypergeometric probability
D, (6=1) (@=1) (0=2.440) (0=1534.1)

0 -0.785  0.455957  0.202245

1 -0.105 0.429136  0.464450 0.000001

2 -1.451 0.107284  0.283314 0.000460

3 -4.252  0.007529  0.048511 0.049540

4 -9.271 0.000094  0.001480 0.949998
Total 1.0 1.0 1.0

vicinity of a nuclear reprocessing plant (see Exercise 11.8). The data set
out in Table 17.3 concern occupational radiation exposure in fathers of 4
cases and fathers of 20 local controls.!-

There are five possible tables with- the same margins as Table 17.3,
with values of D; (the number of exposed cases) ranging from zero to four.
The hypergeometric distribution gives the conditional probability for each
table as a function of the odds ratio parameter, 6, and the log likelihood
for any value of § is calculated by taking the log of the probability of the
observed outcome D; = 3. The most likely value of 8 is 37.345% and the log
likelihood ratio which compares this with the null value (f = 1) is —4.252.
Table 17.4 shows, in the column headed LLR, similar log likelihood ratio
comparisons for each of the five possible tables and, in the next column,
the conditional probabilities of these tables when the null hypothesis is
true. The p-value is the sum of probabilities of the observed table and of
all tables. which are in greater conflict with the null value. In this case
p = 0.007529+0.000094 = 0.007623. The one-sided and two-sided p-values
are identical in this case. This way of calculating the p-value for a 2 x 2
table is called Fisher’s ezact test.

Similar ideas are used to calculate ‘exact’ confidence intervals. To find

tFrom Gardner, M.J. et al. (1990) British Medical Journal, 300, 423-429.

#Note that this is not the same value as that obtained with the profile likelihood
which is (3 x 19)/(1 x 1) = 57.
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the limits of the 90% interval we search for values of # which give one-sided
p-values of 0.05. These values are 2.440 (lower limit) and 1534.1 (upper
limit) and the corresponding hypergeometric distributions are shown in
the last two columns of Table 17.4. At 8 = 2.440 the one-sided p-value is
0.048511 + 0.001480 = 0.04991 and at & = 1534.1 the one-sided p-value is
0.000001 + 0.000460 + 0.049540 = 0.050001. Values of 8 outside the range
from 2.440 to 1534.1 would have smaller p-values than 0.05 and the fre-
quentist theory would therefore suggest that we should pronounce ourselves
90% confident that  lies within this range. As we have seen in Chapter 12,
this is a very technical use of the word confident and no epidemiologist
would really believe that 6 could really take such large values. The ex-
treme finding is obtained, at least to some extent, because the radiation
level chosen here to divide exposed and unexposed groups was chosen after
seeing the data.

Solutions to the exercises

17.1 The following shows the expected results of the three studies. These
have been calculated by splitting the controls between scar present and
scar absent categories in the proportions 46 028/80622 and 34 594/80 622
respectively.

Expected controls
BCG scar Cases Population (a) (b) (c)

Present 101 46028 148 296 740
Absent 159 34594 112 224 560
Total 260 80622 260 520 1300

The standard deviations for the log odds ratio estimate are worked out us-
ing the formula S = \/1/Dg + 1/D; + 1/Hp + 1/H, and are 0.179, 0.155,
and 0.139 respectively. The standard deviation using the full data is 0.127.
The gain in precision with increasing numbers of controls clearly follows a
law of diminishing returns.

17.2 The maximum likelihood estimate of 8 is the observed odds ratio:

90/84
—— =1.99.
165/307 L9
and
1 1 1 1
S—\/8—4+%+W+i€5—0.180.

For calcuiating 90% confidence limits, the error factor is exp(1.645x0.180) =
1.34. The limits are therefore 1.99/1.34 = 1.48 (lower limit) and 1.99 X
1.34 = 2.67 (upper limit).
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The expected number of exposed cases is given by

255
E; =174 % 615 = 68.68

so that the score, U, is (90 — 68.68) = 21.32. The score variance is

174 x 472 x 255 x 391

GOE = 30.37.

The score test is (21.32)2/30.37 = 14.97, (p < 0.001).

F_____,V_.‘ R
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Comparison of odds within strata

This chapter deals with methods for analysing stratified case-control stud-
ies which closely parallel the methods for cohort studies discussed in Chap-
ter 15.

18.1 The constant odds ratio model

As an example we return to the study of the effect of BCG vaccination upon
the incidence of leprosy. Since leprosy incidence increases with age among
young people, age is certainly a variable which would have been controlled
in an experiment. In Chapter 16 it was shown that BCG-vaccinated in-
dividuals had just under one half of the incidence of leprosy as compared
with unvaccinated persons, but age was ignored in the analysis. This could
have biased the estimated effect of BCG vaccination because BCG vacci-
nation in the area (Northern Malawi) was introduced gradually in infants
and young children, so that people who were older during the study period,
having been born at earlier dates, were less likely to have been vaccinated.
As a result, on average the vaccinated group will be younger than the un-
vaccinated group. This means that, even if BCG vaccination were totally
ineffective, one would expect to observe lower rates in vaccinated members
of the base cohort, simply as a result of their relative youth.

Table 18.1 subdivides these data by strata corresponding to 5-year age

Table 18.1. BCG vaccination and leprosy by age

BCG scar Odds
Leprosy cases Healthy population ratio
Age Absent Present Absent  Present  estimate

0-4 1 1 7593 11719 0.65
5-9 11 14 7143 10184 0.89
10-14 28 22 5611 7561 0.58
15-19 16 28 2208 8117 0.48
20-24 20 19 2438 5588 041
25-29 36 11 4356 1625 0.82

30-34 47 6 5245 1234 0.54
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bands. The table also shows age-specific odds ratios. Although there is
random variation, there is no systematic trend of the odds ratio with age,
and it seems reasonable to make the assumption that the odds ratio pa-
rameter is the same in all age bands. In the next section we show how an
estimate of this common odds ratio can be calculated.

18.2 An estimate of the common odds ratio

In the prospective approach to the analysis, the assumption of a com-
mon odds ratio implies that wt/wf is constant, so that the model can be
expressed in terms of the odds ratio parameter ¢ and the wf parameters.
Alternatively, in the retrospective approach the model is expressed in terms
of @ and the parameters Qf. In both approaches, replacing the nuisance
parameters by their estimates leads to the profile likelihood for §. If there
are not too many strata, and the data are not too sparse in each stratum,
then the profile likelihood for # can be used to find the most likely value and
the supported range. For coarsely stratified data sets such as Table 18.1,
these conditions are met. Such an analysis is not feasible by hand, but
would usually be carried out on a computer using logistic regression (see
Chapter 23).

When the data are very finely stratified so that each stratum contains
very few cases and controls, the profile likelihood approach can be unre-
liable, and the hypergeometric likelihood should be used. The total log
likelihood is then obtained by adding together the hypergeometric log like-
lihoods for the different strata. Again, the most likely value M and the
standard deviation S cannot usually be computed by hand, but would be
carried out using a conditional logistic regression program (see Chapter 29).
However, the calculations for the score test for § = 1 are straightforward.
For a single stratum the score under the hypergeometric likelihood is

U=D,-E

where D is the observed number of exposed cases and E; = DNy/N is
the expected number under the null hypothesis. The score variance is

DHNyN;

T wrE-ny

Since every stratum contributes additively to the overall log likelihood,
the overall score is a sum of contributions from each stratum of exactly the
same form as above. Thus, the score is

U= (D} -E)
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where \
N,
¢ pti'l
Ei=D e
and the overall score variance is

D*H!N}N}
V=) oD
(NH)2(Nt —1)°
Exercise 18.1. Show that the first age band in Table 18.1 makes a contribution
of —0.21 to U and 0.48 to V.

The overall test statistic is obtained by repeating these calculations for
each stratum and yields

U=-0.21—-0.69 —6.68 —6.56 — 8.11 — 1.76 — 4.06 = —28.07
and
V =0.48 +6.05 + 12.18 4 7.38 + 8.22 + 9.22 4 8.09 = 51.62.
The approximate chi-squared value on one degree of freedom is
(U)?)V = 787.92/51.62 = 15.26.

The statistic U has a negative sign because the exposure is protective — the
observed number of vaccinated cases is less than would have been expected
had vaccination been ineffective.

Exercise 18.2. Verify that, when there is only one case per stratum, the test
becomes identical to the log rank test discussed in section 15.5.

This test was proposed by Mantel and Haenszel. They also proposed a
way of calculating a nearly most likely value for 8. This is suggested by an
algebraic rearrangement of the equation for the score:

U = Y (Di-E})
ZD{HS—DSH{

- Te-Tw

where Q = DEH{/N*® and R* = D} H:/N*. The usual estimate of the odds
ratio in stratum ¢ is Q*/R’, and this suggests estimating the common odds
ratio, 4, by

QHQ+..._Q

R4+ R2+... R
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When the true value of ¢ is close to 1, this Mantel-Haenszel estimate is
almost as precise as the the most likely value of 8 according to the hyper-
geometric likelihood. It can only be improved upon for odds ratios which
differ substantially from one.

Exercise 18.3. Show that the Mantel-Haenszel estimate of the odds ratio for
the data of Table 18.1 is 0.587.

Note that allowing for confounding by age has weakened the estimated
protective effect of vaccination. This is now about 41% rather than 52% —
a modest adjustment. This is in accord with the general experience that
confounding only causes substantial modification of rate ratios in quite
extreme circumstances.

The usefulness of the Mantel-Haenszel estimate in practice was limited
by the fact that, rather surprisingly, no expression was available for its
standard deviation until relatively recently. Several estimates have now
been proposed, most of them rather awkward to calculate. For most prac-
tical purposes, a good estimate is provided by the same expression as for
the cohort study version (Chapter 15):

v
S=4/—.
QR

Exercise 18.4. For the data of Table 18.1, calculate the 90% confidence interval
for the age-adjusted vaccine effect.

18.3 Improving efficiency by matching

In Exercise 16.2 we repeated the analysis of the leprosy study using a sample
of 1000 controls drawn randomly from the healthy population, with only a
modest loss in the precision of our estimate of the odds ratio. The position
changes, however, when we stratify by age in the analysis.

Table 18.2 shows the way the simulated data lie. It is clear that the
precision of the age-controlled odds ratio estimate will not be as good as
we would have expected with more than 3 times as many controls as cases.
The study has 238 controls for the 2 cases in the 0-4 year age group yet
only 80 controls for the 53 cases in the 30-34 year age group.

With such a design, many controls are wasted and the efficiency of the
study will be lower than it would be if the ratio of controls to cases were
held constant within strata. This is called matching. If the study is carried
out so as to achieve a constant ratio of cases to controls in broad groups
it is called a group or frequency matching. If a set of matched controls
are selected specifically for each case, it is called individual matching. Ta-
ble 18.3 shows a simulated study in which the number of controls has been
maintained at 4 times the number of cases in all age groups.

Exercise 18.5. For the data set out in Table 18.2, the values of Q, R, U,V are
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Table 18.2. The simulated study stratified by age

BCG scar
Cases Controls
Age Absent Present Absent Present
0-4 1 1 101 137
5-9 11 14 91 115
10-14 28 22 82 101
15-19 16 28 - 28 87
20-24 20 19 25 69
25-29 36 11 63 21
30-34 47 6 56 24

Table 18.3. A simulated group-matched study

BCG scar
Cases Controls
Age Absent Present Absent Present
0-4 1 1 3 5
5-9 11 14 48 52
10-14 28 22 67 133
15-19 16 28 46 130
20-24 20 19 50 106
25-29 36 11 126 62
30-34 47 6 174 38

30.00, 51.57, 21.57, and 39.68. For Table 18.3 the corresponding values are 32.14,
56.54, 24.40, and 43.27. Compare the estimates, confidence intervals, and score
tests for the two sets of data.

In practice, age is usually a very strong confounder and almost all case-
control studies are matched for age. At one stage, simultaneously matching
for as many other confounders as possible was frequently advocated. 1t is
now clear that this is not a good idea, but matching is such an intuitively
appealing idea to many epidemiologists that some discussion of the points
for and against matching is of interest.

First it should be noted that an appreciable gain in precision is achieved
only for a confounding variable which is very strongly related to the ex-

_posure of interest. For less strongly related confounders matching leads to

only modest gains in precision while complicating the study design. More
seriously, if a variable is matched in the design, the ability to examine the
effect of that variable is lost since its distribution in the controls will match
that in the cases rather than that in the study base. One must be confident
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Table 18.4. Bias due to ignoring matching

Cases Controls Odds
Stratum  Exposed Unexposed Exposed Unexposed ratio
1 89 11 80 20 2.0
2 67 33 50 50 2.0
3 33 67 20 80 2.0
Total 189 111 150 150 1.7

of the role and status of the variable before accepting such a limitation.

Secondly, much of the early popularity of matching stemmed from a mis-
conception that variables matched in the design can be ignored in analysis,
since differences between cases and controls could then not be attributable
to these variables. It is now understood that this practice leads, in general,
to incorrect estimates of odds ratios. This is demonstrated by Table 18.4.
There are 100 cases and 100 controls in each stratum so that, overall, the
cases and controls are matched with respect to stratum. However, despite
the matching, the marginal odds ratio is 1.7 rather than 2.0, the value
within strata. We have already warned of this behaviour of the odds ratio
in section 15.7; even when confounding by age is removed by matching,
the marginal odds ratio is not equal to the conditional (age-specific) odds
ratios.

The bias that arises by ignoring matching in the analysis is always
towards € = 1. The only circumstances under which it does not occur is
when the matching variable is unrelated to exposures of interest. Only
then may the matching be ignored, but in that case the variable is not a
confounder and there would seem to be no purpose in matching for it in the
first place. However, we shall see in the next section that there are reasons
for matching other than for the efficient control of confounding. Some of
these can lead to circumstances in which the matching can be ignored in
analysis, but usually this is not the case.

Taken together, these two points lead us to a position where a matching
variable must be regarded as a confounder and must be used in the analy-
sis. From this it follows that estimates of the effects of all other exposures
will be controlled for the matching variable. But this may not be what we
want to do. For example, in perinatal epidemiology it may be appropriate
in some analyses to consider birthweight as a confounder while for other
analyses this may not be sensible. If the study is matched for birthweight
at the design stage, analyses which seek to hold birthweight constant are
easily carried out using stratified comparisons, but analyses which do not
hold birthweight constant are much more difficult. Indeed they would be
impossible without knowledge of the sampling fractions for drawing con-
trols from the base within strata. These complexities are best avoided and
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(a) (b)

(c) (d)
Fig. 18.1. To match or not to match?

matching for variables which may not be regarded as confounders for some
questionsis In general amistake. B

Finally, matching may actually reduce the eﬂ‘lmency of a study. This
occurs when the matching variable is strongly related to the exposure, but
not to disease risk (so that, again, it is not a confounder). This is called
overmatching. It leads to a loss in efficiency because the effect of the
matching is gri}L to narrow the range of exposure studied. A good example
would be a study of diet and some childhood illness using siblings of cases as
controls. While such a study would be expected to yield the correct answer
if properly analysed, it would be very inefficient — since siblings usually
eat at the same table of the same prepared meals, the only information
available for estimating the effects of interest will be from sibling pairs
with discordant diets.

This discussion is summarized in Fig. 18.1. The letters D, E, and M
refer to disease, exposures of interest, and matching variable respectively.
Connecting lines indicate statistical relationship. Case (a) is the only one
in which matching leads to a more precise estimate of the odds ratio. Case
(b) is overmatching and leads to a loss of precision. In cases (a) and (b),
the matching must be preserved in the analysis, whereas in cases (¢) and
(d) it may be ignored.

The above discussion tacitly assumes that controls are matched to cases
in rather broad strata, such as 5- or 10-year age bands. It applies equally
to individually matched studies; in principle there is no difference between
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these options, although in practice the latter present rather more difficult
analysis problems as a result of the very large number of nuisance pa-
rameters introduced by such fine stratification. These will be discussed in
Chapter 19. Although matching must usually be preserved during analysis,
it is not always necessary to preserve individual matching. If matching of
controls to cases is only with respect to well defined, accurately measured
variables then a coarser grouping at the analy31s stage is both possible and
acceptable. For example, if matching is only by age, analysis by 5- or 10-
year bands will be quite satisfactory even if specific controls were drawn
for each case. However, matching by characteristics such as nelglib_ourhood
or family does not allow later aggregation of strata.

18.4 Other reasons for matching

Matching is usually justified on the grounds of statistically efficient control
for confounding. Close examination of this suggests that matching should
be used as little as possible and only for variables, like age, which are
strongly related to both disease and exposure and whose status is unequiv-
ocally that of confounder. However, a cursory review of the epidemiological
literature shows that matching is used much more widely than this argu-
ment would support. This is because controls are often matched to cases
for reasons which have nothing to do with control for confounding.

INCIDENCE DENSITY SAMPLING

One example is incidence density sampling, which is simply matching con-
trols to cases with respect to time (date of occurrence). Although time
may be a confounder (when both disease rate and exposure distribution in
the study base vary during the study period), incidence density sampling
is more usually employed for simple practical reasons. It will often be pos-
sible to ignore this matchmg in the analysis or, at most, to group coarsely
on tlme

DEFINING THE EXPOSURE WINDOW

Until this point we have assumed that each individual can be classified as
exposed or unexposed and that this assignment holds for all time. However,
many exposures in epidemiology vary over time, perhaps_quite_rapidly.

When this is the case, it is necessary to specify the time period for assem

relevant exposure. This exposure wmdow is usua.lly clearly definable for
recogmzed but comparable ru,les ‘for controls can be difficult to specify.
Things are much easier when one or more controls are matched to each
single case with respect to time of diagnosis of the case; the time window
used for assessing the relevant exposure of each case is carried over to the

i
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Fig. 18.2. Neighbourhood matching.

matched controls, thus ensuring comparability. We shall encounter a good
example of this in Chapter 19.

AVOIDING SELECTION BIAS

Another example is where controls are matched to cases in order to min-
imize selection bias. This is usually done either because the study base
has not been precisely defined or because there is no accurate way of sam-
pling it. For example, in a geographically based study selection bias may be
caused by the lack of an accurate population register of the study area. Un-
fortunately, construction and maintenance of such registers is enormously
costly and will rarely be feasible for a single case-control study. However,
if the study is closely matched, better sampling may be possible. Fig. 18.2
illustrates this for a geographically based study, divided by the grid into
small neighbourhoods. The dots represent cases occurring during the study
period. A study which matched for neighbourhood would sample controls
only from those neighbourhoods in which a case occurred and it would

~only be necessary to construct lists of eligible controls for these. If neigh-

bourhoods are sufficiently small this involves little work. Of course, the
definition of neighbourhood does not have to be in terms of a regular grid
for this argument to apply. A similar argument justifies drawing controls
from the list of patients of the family doctor of each case.
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Solutions to the exercises

18.1 The number of exposed cases, D!, is 1 and the expected number
under the null hypothesis is

11720
1_ - " =12
By =2 X 1m0+ 7594 !

so that the contribution to U is (1 — 1.21) = —0.21. The contribution to V
is

2 x 19312 x 7594 x 11720
(19314)2 x 19313

= 0.48.

18.2 The expression for the ‘expected’ number of exposed cases in each
stratum, EY, is identical to that given in section 15.5. ‘Thus, the score
statistics, U, are identical. When there is only one case per stratum, D = 1
and H? = Nt — 1 so that the contribution of stratum t to V is

o (VP DNENE  NgNE
(NP (NE-1) (V¥
which is identical to our previous expression. When using the log rank test

with tied event occurrence times (so that D* > 1), the variance formula
given in this chapter should be used.

18.3 The first contribution to the numerator (top) and denominator (bot-
tom) of the Mantel-Haenszel estimate are as follows:

N 1 x 7593 L
T 14147593 +11719°

_ 1x 11719
T 14147593+ 11719°

Ql

Continuing the calculation, we get:

Age Q R
04 0.39 0.61
5-9 5.76 6.46
10-14 9.34 16.01
15-19 596 12.53
2024 5.74 13.86
25-29 7.95 9.70
30-34  4.82 8.88
Total 39.96 68.05

Note that the ratio @/R for each row gives the odds ratios calculated in the
previous exercise. The Mantel-Haenszel estimate is 39.96/68.05 = 0.587.

3

SOLUTIONS 185

18.4 V is given in the text following the first exercise as 51.62 and Q and
R were calculated in the second exercise to be 39.96 and 68.05 respectively.

Using the formula S = +/V/(QR),

/ 51.62
s 39.96 x 68.05 0.138

The error factor for 90% confidence limits is exp(1.645 x 0.138) = 1.255
so that the confidence limits for the odds ratio controlled for age are
0.587/1.255 = 0.47 (lower limit) and 0.587 x 1.255 = 0.74 (upper limit).

18.5 The analysis of the two sets of data yields the following results:

Table 18.2 Table 18.3

Estimate () 0.582 0.568
S (log(8)) 0.160 0.154
Error factor 1.301 1.289
Lower 90% limit 0.447 0.441
Upper 90% limit 0.757 0.732
(U)Y2/v 11.73 13.76

In this case the increase in precision achieved by matching is not great.
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Individually matched case-control
studies

Analyses which preserve the matching of individual cases to their controls
follow similar principles to those of Chapter 18. The strata are now the
sets made up of each case and its matched controls. Studies designed to
have a fixed number of controls, m say, drawn for each case, will be referred
to as 1:m matched studies.

19.1 Mantel-Haenszel analysis of the 1:1 matched study

For reasons discussed in Chapter 18, the use of profile likelihood gives mis-
leading estimates of odds ratios when there are a large number of strata
with little data in each stratum. However, the Mantel-Haenszel method
works perfectly well in these circumstances. The calculations are particu-
larly easy in the 1:1 case, and illustrate ideas which are important for our
later discussion of the likelihood approach.

The results of 1:1 matched studies are usually presented in 2 x 2 tables
such as Table 19.1.* These data were drawn from the same study as re-
ported in Chapter 17, and concern the relationship between tonsillectomy
history and the incidence of Hodgkin’s disease. The total study included
174 cases and 472 controls, but the controls were siblings of the cases, and
the authors felt that the matching of cases and sibling controls should be
preserved. They also wished to control for age and sex and therefore re-
stricted their analysis to 85 matched case-control pairs in which the case
and sibling control were of the same sex and matched for age within a
specified margin. Note that, in the construction of matched sets, the orig-
inal 174 cases and 472 controls have been reduced to only 85 cases and 85
controls.

Tables such as Table 19.1 can be confusing because we are used to see-
ing tables that count subjects, while this table counts case-control sets.
The four cells of the table correspond to the four possible exposure con-
figurations of a case-control set. These are illustrated in terms of a tree
in Fig. 19.1. The first branching point is according to whether or not the
control was exposed (denoted E+- and E- respectively), while the second

*From Cole, P. et al. (1973) New England Journal of Medicine, 288, 634.
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Table 19.1. Tonsillectomy history in 85 matched pairs

History History of control

of case Positive Negative
Positive 26 15
Negative 7 37
Control Case H Hp D, Do
E+ 1 0 1 0
E+
BE— 1 0 0 1
E+ 0 1 1 0
E—
E— 0 1 0 1

Fig. 19.1. Exposure configurations for 1:1 sets.

branching is according to exposure of the case. The frequencies in Ta-
ble 19.1 refer to counts of these four configurations.

Exercise 19.1. How often did each of the exposure configurations of Fig. 19.1
occur?

In the analysis of individually matched studies the strata are case-
control sets so that, in the notation of Chapter 18, ¢ indexes sets. The
number of subjects in each stratum is N* = 2, and since each stratum.
contains one case and one control, D* and H? are always 1. The values of
Dy, D§, HY, and H{ for each exposure configuration are shown in Fig. 19.1.
In this figure and henceforth we will omit the superscript ¢ for clarity, and
remember that the symbols refer to values in a single case-control set.

Exercise 19.2. What are the contributions of each configuration to @ and
R in the Mantel-Haenszel estimate of the odds ratio? Similarly what are the
contributions to the score and score variance, U and V? Which configurations

_contribute to estimation and testing?

It can be seen that only two exposure configurations make any contribution
to estimation and testing of the odds ratio. These are the sets in which the
exposure status of case and controls differ and are called discordant sets.
The remaining sets are called concordant sets. In our current example, 63
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of the case-control sets are concordant and are ignored.

Exercise 19.3. For the tonsillectomy data, what are the values for Q, R, U, V?
Using the methods of Chapter 18, estimate the odds ratio, its 90% confidence
interval, and a p-value for § = 1.

The odds ratio estimate is very close to that obtained in the analysis of
Chapter 17, but so much data has been lost in this analysis that the result
is no longer statistically significant. It is easy to criticize an analysis which
discards so much data, but when it is necessary to preserve the matching
of controls to cases it is not easy to see how one can adjust for the effects of
additional variables by stratification, since the case and its control may fall
within different strata. At the time this study was reported there would
have been no alternative but to discard such sets. Nowadays, this problem
is easily overcome by use of the regression methods to be described in
Part II.

Before leaving this example, it is interesting to note that the above anal-
ysis is not the one originally reported. In their first report, the researchers
subscribed to the misconception discussed in Chapter 18 — that the match-
ing for age, sex, and family was sufficient to control for these variables and
that subsequently the matching could be ignored in the analysis.

Exercise 19.4. Show that the odds ratio estimate obtained by ignoring the
matching is less than that obtained by the correct analysis.

19.2 The hypergeometric likelihood for 1:1 matched studies

The hypergeometric likelihood is obtained by arguing conditionally upon
both margins of the 2 x 2 table, and depends only upon the odds ratio
parameter. It is usually difficult to compute, but its use is only necessary
when the data within strata are few. This is the case for individually
matched studies and the hypergeometric likelihood must be used. Luckily
in this case the computations are quite easy — particularly in the 1:1 case.

Fig. 19.2 derives the probability of each exposure configuration by mul-
tiplying along branches of the tree in the usual way and also lists the total
number of subjects in the set who were exposed, N;. The odds that the
control in the set was exposed is denoted by Qg and the odds that the case
was exposed by i, and we have written K for the expression

1
(1+20)1 + 1)

which occurs in all four probabilities. To obtain the hypergeometric like-
lihood we argue conditionally on the number of subjects exposed, N;. It
is clear from the figure that, when N; = 2, thére is only one possible ex-
posure configuration; the conditional probability of the observation is 1
and there is no contribution to the log likelihood. Similarly, there is no
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Control Case Ny Probability
Q1/(1 + Q) E+ 2 Qo K
E
Q0/(1 + o) +
1/(1+ Q1) > E—- 1 QK
Ql/(l + E+ 1 LK
1/ +90)\ g
1/(1+€1) > E~ 0 K

Fig. 19.2. Probabilities for a case-control set.

contribution to the log likelihood from sets in which N7 = 0. These con-
figurations correspond to the concordant sets which were also ignored in
our previous analysis. However, when N; = 1 the exposure configuration
could be either the second or third. These are the possible configurations of
discordant sets. The observed split of discordant sets between the second
and third configurations determines the log likelihood.

The conditional probabilities that a discordant set is of the third type
(case exposed, control unexposed) and the second type (case unexposed,
control exposed) are

QlK d QOK
QoK+ K QoK+ K

respectively, and the conditional odds that the case was exposed is the
ratio of these, /. This is the odds ratio parameter 0, assumed in our
model to be constant for all the case control sets. The conditional argument
therefore leads to a Bernoulli log likelihood based on splits of discordant;
sets into those in which the case is exposed and those in which the case is
unexposed, the odds for such splits being 6. In our data, such sets split
15:7 and the log likelihood is

151og(9) — 221og(1 + 6).

" Exercise 19.5. Calculate the most likely value of 8, a 90% confidence interval

and the score test for the null hypothesis § = 1. These results of this exercise
should agree precisely with those obtained using the Mantel-Haenszel method.
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Table 19.2.  Screening history in breast cancer deaths and matched
controls

Status Number of

of the controls screened

case 0 1 2 3

Screened 1 4 3 1

Unscreened 11 10 12 4

19.3 Several controls per case

The arguments outlined above may be extended to the situation in which
there are several controls for each case. As before, we start with the Mantel—
Haenszel approach.

Table 19.2 shows the results of a case-control study of breast cancer
screening. Cases are deaths from breast cancer and each case is matched
with three control women.! The exposure of interest is attendance for
breast cancer screening. If screening is effective in prolonging life, screened
women should have lower mortality rates and the odds ratio estimate from
the case-control study should be less than 1. Note that as in Table 19.1,
the table counts case-control sets and not women.

This study illustrates one of the reasons for matching discussed in Chap-
ter 18. Women who die from breast cancer usually do so some years after
initial diagnosis and during the period between diagnosis and death they
would not be screened. Thus, controls would have a greater opportunity to
be screened than cases. This difficulty was overcome by determining the
relevant ezposure window, the screening history of the controls was assessed
over the period up to the time of diagnosis of the case, so that the screen-
ing histories of cases and controls are comparable. It was only possible to
deal with this problem in this way because the study matched controls to
individual cases.

Table 19.2 demonstrates the usual way such data are presented. How-
ever, it is very difficult to perceive any pattern — even as to whether or
not screening appears to be a protective. To understand the analysis, we
shall start by reordering the data as a tree. Fig. 19.3 illustrates the possible
exposure configurations. The first three branches represent the exposure
status of the three controls, the upper branch representing exposed (E+)
and the lower unexposed (E—). Because we do not wish to differentiate
between individual controls, this section of the tree may be abbreviated.
For the first two controls, we do not need to differentiate between the con-
figurations (E+, E—) and (E—, E+). These are simply grouped together as
having 1 control exposed and we write the figure 2 at this point to remind
us that branches emanating from this point are double branches. Similarly,
after consideration of the third control we group together the 3 configu-

TFrom Collette, H.J.A. et al. (1984) The Lancet, June 2, 1984, 1224-1226.

Controls Case H, Hy D, Dy
(1) 2) 3)
E+ 3 0 1 0 (a)
< |
E— 3 0 0 1 (b
+
E+ 2 1 1 0 (o)
o <
E- 2 1 0 1 (d)
T2
+
E+ 1 2 1 0 (e)
E_ —
+ 3<
E— 1 2 0 i ()
<E+ 0 3 1 0 (2
E— 0 3 0 1 (h)

Fig. 19.3. Exposure configurations for 1:3 sets.

rations with 2 exposed controls and the 3 configurations with 1 exposed
control. The final branching represents the exposure status of the case.

Exercise 19.6. In the screening data, how frequently do each of the eight types
of exposure configuration occur?

We shall first analyse these data by the Mantel-Haenszel method. In
the next section, we shall discuss the likelihood approach and show how it
suggests a more useful arrangement of the table.

Exercise 19.7. Tabulate the values of @, R, U, and V for these eight tables
and hence calculate the Mantel-Haenszel significance test, odds ratio estimate
and an approximate 90% confidence interval.

This analysis shows that the study finds a substantial and statistically
significant reduction in mortality as a result of breast cancer screening.

"19.4 The likelihood

The analysis of these data by use of the hypergeometric likelihood method
is also quite straightforward. As before we argue conditionally upon the
margins. Fig. 19.4 shows the total number of subjects exposed, Ny, and the
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Controls _ Case N1
1 (2) 3)
E+ 4 (90)391[{ (a.)
E- 3 (Q)°K (b)
+
E+ 3 3(90)291[{ (C)
. <
E- 2 3(Q)*K (d)
T2
+
E+ 2 3QoQ1K (e)
E- >3
E— 1 30K (£)
E— 0 K (h)

Fig. 19.4. Probabilities for 1:3 sets.

probability of each configuration, again writing K for the common factor,
in this case

1

K= 1+ Q)30 +0)

Note that the probabilities for configurations (c) to (f) are multiplied by 3
because each of these represents three paths in the complete tree. Now there
are 5 possible values for the total number of subjects exposed. Again there
are two concordant configurations in which the number of subjects exposed
uniquely determines the configuration. Ny = 4 ensures configuration (a)
.and N; = 0 ensures configuration (h). These make no contribution to the
log likelihood. Each of the other three values of N; allows for two possible
configurations, one in which the case is exposed and the other in which the
case is unexposed. It is the splits of the observed data between these that
yield the likelihood. .

If the total number-of exposed subjects in the set, Ny, is fixed at 3, then
the exposure configuration must be either (b) or (c¢) and the conditional
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Table 19.3. Splits of case-control sets
N; Split Odds Observed

3 (c):(b) 36 3:4
2 (e):(d) 0 4:12
1 (ge(f) 6/3 1:10

odds for the split (c):(b) is

3(Q)2nK 3 30

(Q9)3K Qe )
Similarly, N; = 2 implies (d) or (e) and N; = 0 implies (f) or (g). The odds
predicted by the model for these splits are set out in Table 19.3, together
with the observed frequencies. By eye we can see that a value of 6 of about
0.3 predicts the observed splits very well indeed. More formally, the log

likelihood is
0 0
1 b Z
1 og(3> 11log (1+3>

+ 4log(6) —16log(1+6)
+ 3log(30) — Tlog (1 + 36).

There is no simple expression for the maximum likelihood estimate and
it is necessary to use a computer program to search for the maximum.
This occurs at § = 0.31 (log(6) = —1.18). The plot of the log likelihood
ratio against log(#) is shown in Fig. 19.5. A Gaussian approximation with
S = 0.404 fits quite closely.

The generalization of this argument to any number of controls per case
may be carried out algebraically or by extending our tree. For sets of
N7 exposed subjects and Ny unexposed subjects, the constant odds ratio
model predicts that sets will split between those with an exposed case and
those with an unexposed case with odds

N16/No.

A similar generalization is possible for several cases in each set. We will
not give the details here, but computer software is readily available. Such
analyses do not arise frequently in practice. An exception is family studies
in which more than one sibling may be affected by a disease and unaffected

~.siblings are used as controls.

In the examples discussed in this chapter, the Mantel-Haenszel and like-
lihood methods agree closely. The calculations for the former are rather
easier, but the advantage of the likelihood approach lies in its greater gen-
erality and possibilities for extension. For example, when there are more
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Fig. 19.5. Log likelihood ratio for log(6).

than two exposure categories, there is no simple method analogous to the
Mantel-Haenszel approach. We shall defer discussion of such extensions to
Part II of the book.

Solutions to the exercises

19.1 In ‘the order in which the exposure configurations are listed in the
figure, their frequencies are 26, 7, 15, and 37.

19.2 In the same order as listed,

Q R U V
0 0 0 0
0 1/2 -1/2 1/4
/2 0 12 1/4
0 0 0 0

Only the second and third configurations contribute to @, R, U, and V.

19.3

15 x (1/2)
7 x (1/2)
15x(1/2) —7x(1/2) =4

Q@O
[

I
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V o= 15x(1/4)+7x(1/4) =55

The odds ratio estimate is 15/7 = 2.14. This estimates the underlying
rate ratio, so that the suggestion is that tonsillectomy doubles the rate of
Hodgkin’s disease. Using the expression

|V
S = OR 0.4577,

the 90% error factor for the odds ratio is exp(1.645 x 0.4577) = 2.12. The
90% confidence limits are, therefore, 2.14/2.12 = 1.01 (lower limit) and
2.14 x 2.12 = 4.54 (upper limit). Referring the value (U)?/V = 2.91 to the
chi-squared distribution gives p =~ 0.09.

19.4 If the matching is ignored, the following 2 x 2 table is obtained:

History: Positive Negative

Cases 41 44

Controls 33 52
The odds ratio in this table is (41 x 52)/(33 x 44) = 1.47, as compared to
the value of 2.14 obtained by the correct analysis.

19.5 The most likely value is 15/7 = 2.14. To calculate the approximate
90% interval using Gaussian approximation of the log likelihood for log(6)

we use
f1 1
=4/— 4= =0.4577
S 15+7 04577,

the same as we obtained with the Mantel-Haenszel method. Under the null
hypothesis, the probability for the split is 0.5 so that the expected number
of sets with an exposed case is 22 x 0.5 = 11. The score and score variance
are

U = 15-11=4,
V = 22x0.5x0.5=55.

Again these are the values we obtained using the Mantel-Haenszel method.

\

""19.6 In the order listed in the figure, the 8 exposure configurations have

frequencies 1, 4, 3, 12, 4, 10, 1, 11.

19.7 The contributions to @, R, U and V are shown below:
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Number

of sets Q R U v
(a) 1 0 0 0 0
(b) 4 0 3/4 -3/4 9/48
(c) 3 1/4 0 1/4 9/48
(d) 12 0 2/4 —2/4 12/48
(e) 4 2/4 0 2/4 12/48
() 10 0 1/4 -1/4 9/48
() 1 3/4 0 3/4 9/48
(h) 11 0 0 0 0
Total 14/4 46/4 -32/4 354/48

Note that each contribution has to be multiplied by the number of times
it occurred so that, for example, the total value of Q is

(3 x 1/4) + (4 x 2/4) + (1 x 3/4) = 14/4.

The Mantel-Haenszel estimate of 6 is 14/46 = 0.30 and the chi-squared
test is (U)?/V = 8.68 (p < 0.01). An approximate error factor can be
calculated from

v

exp (1.645 X ﬁ) =2.02

so that the 90% confidence interval lies from 6 = 0.15 to @ = 0.60.




20
Tests for trend

Up to this point we have dealt exclusively with comparisons of exposed and
unexposed groups. Although it is possible that the action of an exposure is
‘all or nothing’, coming into play only when a threshold dose is exceeded,
it is more common to find a dose-response relationship, with increasing
dose leading to increasing disease rates throughout the range of exposure.
This chapter introduces analyses which take account of the level or dose of
exposure.

20.1 Dose-response models for cohort studies

The simplest model for dose-response relationship assumes that the effect
of a one-unit increase in dose is to multiply the rate (or odds) by 6, where
0 is constant across the entire range of exposure. Thus the effect of each
increment of dose on the log rate or odds is to add an amount 8 = log(8).
This model is called the log-linear model and is illustrated in Fig. 20.1. The
dose level is denoted by 2. The rate at dose z = 0 is given by log(Xo) = a,
at z = 1. by log(\1) = a+ 8, at z = 2 by log(Az) = o + 24, and so on.

In principle, log-linear models present no new problems. The model
describes the rate at different doses z in terms of two parameters o and
8. The first of these describes the log rate in unexposed persons and will
normally be a nuisance parameter; the second is the parameter 3, which
describes the effect of increasing exposure. The contribution to the log
likelihood from D, events in Y, person-years of observation at dose z is

D, log(X;) = YA,

and the total log likelihood is the sum of such terms over all levels of
exposure observed. This is a function of both @ and § but; as before, we
can obtain a profile likelihood for the parameter of interest, 3, by replacing
« by its most likely value for each value of 8. This profile likelihood is
given by the expression:

Y, exp(Bz)
2 D:log (219 exp(ﬂz)> !

where both summations are over dose levels z. Exactly the same log likeli-
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log(Rate)

Dose, z
Fig. 20.1. Log-linear trend.

hood is obtained using the retrospective conditional argument based on the
probability that the cases split between exposure categories in the ratios
observed. .

To find the most likely value of the parameter B requires computer
programs for Poisson regression, whose use will be discussed in Part IL
However, the likelihood can be used to obtain some simpler analytical
procedures. Most importantly, a statistical test for the significance of a
dose-response effect can be derived by calculating the gradient of the log
likelihood at 8 = 0. This leads to the score

where summation is over exposure doses z and, as usual, D = > D,. The
first term within the brackets is the mean exposure for cases, while the
second is the mean exposure in the entire cohort, using the person-time
observation as weights. The weighting ensures that a subject observed for
twice as long contributes twice as much to the mean; this is necessary since
he or she has twice the chance of becoming a case.

Denoting means of z by Z, the score may be written

U=D (2Cases - 2Cohort) .

The score variance, obtained from the curvature of the log likelihood curve
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Table 20.1. Observed and expected deaths from bladder cancer in work-
ers in the nuclear industry

Dose code, 2 0 1 2 3 4 5 6
Dose (mSv): <10 10- 20— 50- 100- 200- > 400
Observed, D, 3 2 1 1 3 2 2

Expected, E, 62 1.0 22 1.8 1.5 1.0 0.4

at §=0,is 2

V=D E‘% - ('ZCohort)2
This expression is D times the variance of the exposure doses z within the
cohort (again weighting by person-time of observation). The calculation of
weighted means and variances is easily carried out on scientific calculators
which include special keys for these operations.

The same argument applies in the construction of tests for trend in
SMR’s except that instead of the person-time Y, we now use E,, the ex-
pected numbers of events obtained by application of age-specific reference
rates. The use of this test is illustrated in the following example.

RADIATION AND BLADDER CANCER

Table 20.1 shows observed deaths from carcinoma of the bladder in a cohort
of radiation workers, classified according to the radiation dose received.
Also shown are the numbers of deaths expected in each category on the
basis of England and Wales rates.* The mean dose code for the bladder
cancer cases is:

3x04+2x14+1x2+4+...42%x6

o =293

The expected mean is obtained by using the expected numbers of cases as
weights, is

6.2x0+10x14+22x24...4+404x%x6
14.1

=172

so the score is
U =14(2.93 - 1.72) = 16.9.

The weighted variance of the dose may be calculated using the appropriate

calculator key, or from :

6.2 x (0)24+1.0x (1)2+22x (2)?+...4+0.4 x (6)?

—_ 2 —
T (1.72)? = 3.31,

*From Smith, P.G. and Douglas, A.J. (1986) British Medical Journal, 293, 845-854.
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so the score variance is V = 14 x 3.31 = 46.4. The score test is therefore
(16.9)2/46.4 = 6.16, which corresponds to a p-value of 0.013. Although in
this example, radiation dose was grouped into a few discrete categories, this
is not a requirement of the analysis. Dose could be recorded more exactly
so that no two individuals share the same dose. Observed and expected
mean doses are calculated in the same way.

When the exposure dose is roughly normally distributed within cases,
the log likelihood is nearly quadratic and an approximation to the most
likely value of 3 is provided by

U _ Mean dose (cases) — Mean dose (cohort)
vV Variance of dose {cohort)

The standard deviation of this estimate is approximately 1/1/V.

Exercise 20.1. (a) Calculate a rough estimate of 3 for the bladder cancer data.
(The maximum likelihood estimate is 0.328.)

(b) What is the interpretation of 37 How may the effect be expressed in terms
of rote raties?

{c) How would the interpretation of the analysis be changed if the calculations
had been carried out using the actual radiation dose as z rather than the 0-6
code?

20.2 Stratified analysis of cohort data

The extension of these ideas to stratified analysis involves only a slight
extension of the model. Use of either a profile or conditional approach
leads to a log likelihood function for 8 which is simply a sum over strata of
contributions of the same form as in the previous section. In consequence,
the score and score variances at 8 = 0 are simply sums of contributions
from each stratum:

U

Z Dt (zéases - zf]ohort;) )

V=th.

U

ENERGY INTAKE AND IHD

An example of the use of this method is shown in Table 20.2. The table
is calculated from the same data on energy intake and ischaemic heart
disease which has been encountered in previous chapters, and compares
observed and expected mean energy intake of heart disease cases. The
study cohort was drawn from three rather different occupational groups,
bank workers, London bus drivers, and London bus conductors. To control
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Table 20.2. Mean energy intake (kcal/day) of IHD cases

Bank staff Drivers Conductors
Age Obs. Exp. Obs. Exp. Obs. Exp.
40-49 2769 3015 2918 2853 - -

4 2 ()
50-59 2514 2894 2808 2838 2515 2845
®) 4 (5)
6069 2725 2846 2458 2833 2718 2828
M (6) 9)

for confounding by age and occupation, 9 strata are required. Table 20.2
shows the comparisons of means for the 9 strata formed by crossing the
three occupational groups by three age bands. The numbers of cases are
shown in parentheses.

The most striking feature of this table is the consistency of the finding
that energy intake is lower in cases than would be expected under the null
hypothesis. This is confirmed by the overall significance test for which

U = 4x(2769—3015)+---+9 x (2718 — 2828)
—9765
V = 8446000,

i

so that the score test is (—9765)2/8 446000 = 11.29 and p < 0.001 (detailed

workings for V' are not shown).
The use of U and V to obtain a rough estimate of 3 is exactly the same
as in the unstratified case.

Exercise 20.2. Calculate an approximate estimate of 3 for the energy intake
data, using the values of U, V given above. Calculate the change in log rate
predicted for a 500 kcal change in energy intake and express this as a rate ratio.

20.3 Dose-response relationships in case-control studies

The extension of these methods to deal with case-control studies requires
only the change to an appropriate likelihood. In Chapter 17 we showed
that this is the likelihood based upon the split of the N, subjects observed
with exposure level z as D, cases and H, controls. If the odds predicted
by the model for such a split are w,, the log likelihood is

Z [D,log{w,) — N, log(1 + w,)].

The idea that the rate ratio for each dose increment is constant translates,
in the case-control study, to a constant odds ratio for each one unit change
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Table 20.3. Screening histories in breast cancer deaths and controls

Negative screens

0 1 2 3 Total
Cases 29 22 3 3 57
Controls 99 122 40 24 285
Subjects 128 144 43 27 442

in dose. Thus the model for the log odds takes the same form as Fig. 20.1:
log(w,) = o + Bz.

This is a logistic regression model. Computer programs for estimating 3
are widely available and their use will be discussed in Part II, but a score
test of the null hypothesis 8 = 0 requires only simple tabulations and a
hand calculator. The nuisance parameter, c, is removed either by a profile
likelihood approach, or by a conditional argument leading to the hyperge-
ometric likelihood. In either case, the score test given by the gradient of
the log likelihood curve turns out to be:

U - % EDZz_ZHZz
- N D H ’

DH _ 3
N (ZCases — ZControls)

The score variance is obtained from the curvature of the log likelihood
and, as in section 17.3, the profile and the conditional approaches lead to
slightly different expressions. For the conditional approach,

_ DH Y N,(2)% - N(2)?
- N (N—-1) ’

where Z is the overall mean dose (3 N,z)/N. Apart from the factor DH/N,
this is the usual estimate of the variance of dose in the study when cases
and controls are combined. The profile likelihood argument leads to the
same expression, but with (N — 1) replaced by N.

Exercise 20.3. In Chapter 19, a case control study of the efficacy of a ra-
diographic breast cancer screening programme was discussed. Table 20.3 shows
data drawn from a similar study concerning the number of times women had
been screened (with negative result).

(2) By calculating case/control ratios, examine the data for evidence of decreas-
ing risk with increasing numbers of negative screens.

(b) The mean number of screens for cases is 0.649, and for controls is 0.961. The

tFrom Palli, D. et al. (1986) International Journal of Epidemiology, 38, 501~504.
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overall variance of the number of screens is 0.810. Calculate the score and score
variance and the corresponding chi-squared value.

Extension of these results to stratified and matched case-control studies
follows along familiar lines. Each stratum (or case-control set) provides its
own contribution to the score:

DH!
Ut = Nt (

St st
ZCases zControls) .

The overall score is the sum of these contributions and the score variance
(using the hypergeometric conditional argument) is the sum contributions:
_ D'H'Y, Ni(2)2 - N*'(z)?

TNt Nt—1 ’

Vt

This stratified version of the score test for 8 = 0 is often called the Mantel
extension test.

Under the log-linear model, if the dose is normally distributed in con-
trols then it will also be normally distributed in cases, but with a different
mean value. In those circumstances, an estimate of 8 will be provided by
U/V as in earlier sections.

When there are only two dose levels (z = 0 and z = 1), it can be shown
that the tests set out in this chapter are identical to those discussed in
previous chapters. It follows from this equivalence that all the score tests
discussed in this book may be thought of as comparisons of mean exposures.
This insight makes possible the use of standard computer programs for
summary tabulations of large bodies of data. This is particularly valuable
for preliminary analysis and for demonstrating the consistency of a finding
over subgroups.

Exercise 20.4. If you are undeterred by algebra, you might like to try and prove
this equivalence.

Solutions to the exercises

20.1 The rough estimate of 3 is 16.9/46.4 = 0.36. This is the log of the
rate ratio for one unit change in dose score. The rate ratio is exp0.36 = 1.4.
The dose code is constructed so that one unit change in z represents a
doubling of the radiation dose, so that the approximately fitted model
suggests that doubling the radiation dose multiplies the bladder cancer rate
by approximately 1.4. If the analysis had been carried out by calculating
means of radiation dose itself rather than mean dose code, the implied

‘model would have been rather different — that the addition of a given

radiation dose would multiply the rate by some constant amount.

20.2 The rough estimate of 3 is —9765/8 446 000 = —1.16 x 10~3. This
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is the change in the log rate for one unit change in energy intake. For
500 keal change, the change in log rate is —~1.16 x 103 x 500 = —0.58.
This corresponds to a rate ratio of exp —0.58 = 0.56. The study therefore
indicates that an increase of 500 kcal in daily energy intake is associated
with an approximate halving of the incidence rate of IHD.

20.3 The case/control ratios for 0, 1, 2 and 3 previous negative screens are
0.29, 0.18, 0.08 and 0.13 respectively, suggesting that mortality rates from
breast cancer fall with increasing numbers of previous negative screens.
The score is

57 x 285
U= W(O.MQ —0.961) = —14.82
and the score variance is
57 x 285

so that the score test is (—14.82)%/38.47 = 5.71, corresponding to a p-
value of 0.017. The use of this test in this case is debatable, since it is
not by any means clear that a simple linear or log-linear dose-response
relationship should apply. The true relationship between screening history
and subsequent mortality depends in a complex way upon the sensitivity of
the test, the speed of growth of tumours, the relationship between prognosis
and tumour stage at start of treatment, together with the time interval
between screens. Most of the evidence for trend comes from the higher
case/control ratios in the never screened group, rather than from a gradient
with increasing number of screens. We must be careful not to interpret a
significant trend test as indicating evidence for dose-response as such.

20.4 For cohort studies, the equivalence follows from the fact that Zcges
is the proportion of cases exposed, D;/D. Similarly Zoopost is the pro-
portion of person-time exposed, Y1/Y. The variance of a binary z in the

cohort is 5
o h)"_Yh
Y Y - (Y)?

and substitution of these expressions into the formulas given in section 20.1
gives the same test as Chapter 13.
For case-control studies, the means of z in cases and in controls are the
corresponding proportions exposed, Dy /D and Hy/H. The variance of z
in the study is

N =N /N)? — NoVy

N -1 T NN -1)

Substitution of these values into the formulas of section 20.3 gives the test
discussed in Chapter 17.




e e

VR

21
The size of investigations

Before embarking on an epidemiological study, it is important to ensure
that the study will be large enough to answer the questions it addresses.
Calculation of the required study size is often regarded as rather difficult,
but in fact requires no new methods.

The problem is usually presented as if the scientist comes to the statis-
tician with a clearly formulated hypothesis and the simple question ‘How
large should my study be?’. This is rarely the case. More usually the in-
vestigator has a very clear idea of the size of study proposed, this being
determined by budgetary and logistic constraints, and requires an answer
to the question ‘Is my proposed study large enough?’. All too often cal-
culations show the answer to be no! The investigator then needs to know
how much larger the study needs to be.

This chapter will address the problem of study size from this standpoint.
In addition to being more realistic, it follows more naturally from earlier
chapters since the first stage of the calculation is to guess the results of
the proposed study and analyse these. It will be convenient to develop
the argument in the simplest case — the comparison of incidence in a
cohort with that in a standard reference population. Generalization to
other study designs is straightforward and will be discussed towards the
end of the chapter.

21.1 The anticipated result

In order to answer the question ‘Is my proposed study large enough?’, we
need to put ourselves in the position of having carried it out. To do this, it
will be necessary to make some guesses about how things will turn out. A
careful calculation of study size may involve a range of guesses. The most
important thing to guess is the size of the effect of primary interest.

We shall take as an example a cohort study to investigate an occupa-
tional risk of lung cancer. In the proposed study, a cohort of industrial

.. workers will be traced, and all deaths from lung cancer counted. This

number will be compared with the expected number of deaths obtained by
applying national age- and period-specific mortality rates to the table of
person-time observation for the cohort. The first stage of the calculation
will be to guess this person-time table, allowing for mortality in the cohort.
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Let us assume that this has been done and that it leads to an expected
number of lung cancer deaths of E = 12.5.

Exercise 21.1. What is the anticipated outcome of the study when 8, the rate
ratio parameter for occupational exposure, is (a) 1.4, (b) 1.7, (c) 2.0, and (d) 5.0.
In each case calculate the logarithm of § and calculate the anticipated standard
deviation for the log SMR. (which estimates log(8)). Is the study large enough to
detect these rate ratios?

It is clear that the study would not be large enough to detect a rate ratio
of 1.4, since the anticipated result would yield a 90% confidence interval
which includes the null hypothesis 8 = 1 (log(8) = 0). It should be equally
clear that the study will almost certainly detect a rate ratio of 5, since in
that case the size of effect is very large in comparison with its standard
deviation. The two intermediate values for § are more problematic and in
such cases it is useful to further quantify the chances that the study will
detect the effect.

21.2 Power

The power of a study is defined as the probability that it will yield a
significant result when the true size of effect is as specified. The power is
different for each size of effect considered, being greater for larger effects.
Thus the power of a study is not a single number, but a whole range of
values. The plot of power against size of effect is called a power curve.
Two such curves for studies of different sizes are illustrated in Fig. 21.1. In
practice it is rare for the entire power curve to be presented; more usually
a few points in the range of effects are tabulated.

Exercise 21.2. Which curve corresponds to the larger study?

A significant result is defined as a result where the p-value for the null
hypothesis is below a specified threshold (the significance level). Alterna-
tively (and equivalently) it may be thought of as a result in which the null
hypothesis falls outside a specified confidence interval. To calculate the
power, it will be necessary to specify the significance (confidence) level to
be used to categorize the result as significant. A study will have a higher
power to detect a finding at the 5% level of statistical significance (95%
confidence) than at the 1% level (99% confidence).

21.3 Calculating the power

It has already been stated that study size calculations require some guess-
work. There is therefore little point in calculating power to a high order of
accuracy. In this section we outline approximate power calculations which
are accurate enough for all practical purposes.

Fig. 21.2 sets out our notation. The study aims to estimate an effect

Power

1.0

0.2 0.4 0.6 0.8

0.0
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Calculating the power of a study.
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parameter, 3,* and we assume that the log likelihood may be approximated
by a Gaussian log likelihood with standard deviation S. To simplify nota-
tion, we also assume that the point 8 = 0 represents the null hypothesis
(no effect). For example, 8 may be the log of a rate ratio or odds ratio.
We wish to calculate the probability that the study will detect an effect of
size 8 = b.

The lower part of the figure shows the anticipated result of the study.
The black disc indicates the expected effect and the lines to either side
indicate the expected confidence interval which would be calculated. The
result will be taken. as significant if the entire confidence interval lies to
the right of the null hypothesis. The width of the interval depends upon
the standard deviation .5, and this in turn depends upon the size of the
study. The interval also depends upon the significance or confidence level
chosen. For example, for a 5% significance level we use the 95% confidence
interval, which extends 1.96 standard deviations either side of the estimate,
so ¢ = 1.96.

If the expected value of the lower confidence limit lies above 8 = 0,
the study would be expected to yield a positive result. However, it is not
guaranteed to do so. If we imagine the study being repeated, the estimates
obtained will vary from occasion to occasion. These estimates are indicated
on the diagram by open circles.

The variation of estimates around the expected value is approximately
Gaussian with standard deviation S. Ignoring the slight dependence of .S
upon the estimated value, the lower confidence limit will also vary around
its expected value according to a Gaussian distribution with standard de-
viation S. The power of the study is the probability that this lower bound
falls above zero. This depends upon the number of standard deviations
between zero and the expected position of the lower bound. Referring to
this number as d, the probability that the lower limit is above zero is then
given by the probability that an observation in a standard Gaussian dis-
tribution exceeds —d. For example, if d = 1.645, the power is 0.95. When
the expected location of the lower confidence limit is exactly at the null
hypothesis, so that d = 0, the power is 0.50 and there is an even chance
of obtaining a significant result. When the expected position is below zero
d < 0, the power is less than 0.50. (Tables of the standard Gaussian dis-
tribution are widely available and are not included in this book.)

Exercise 21.3. For the study discussed in Exercise 21.1, calculate d for each
value of the log rate ratio, assuming that a 5% significance level will be used (i.e.
¢ = 1.96). Using tables of the Gaussian distribution, obtain the power in each
case.

*We use this letter as it is the usual symbol for an effect parameter in regression
models. It should not be confused with the ‘type II error probability’, for which it
stands in some texts.
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Table 21.1. Choice of ¢ and d
Significance ¢ Power d

0.10 1.645 0.95 1.645
0.05 1.960 0.90 1.282
0.01 2.576 0.75 0.674

21.4 Increasing the power

If the results of the power calculations are disappointing, it will be necessary
to increase the study size in some way. In this section we show how to
determine by how much the study size must be increased to achieve the
desired power.

Predetermining the significance level fixes the value of ¢. Similarly,
predetermining the power fixes d. Since we require the distance (¢+d)S to
equal the expected effect, b, we must choose the size of the study so that

S = b .

c+d
Table 21.1 lists some common requirements for significance and power.
Note that, in each row of the Table, (¢ + d) is between 3.2 and 3.3 so that
these choices of significance and power suggest designing the study so that
the expected effect, b, is just over 3 standard deviations.

Exercise 21.4. Calculate the value of the S which must be achieved if there were
to be a power of 0.90 to detect a rate ratio § = 1.7 at the p = 0.05 significance
level.

If the value of S required to achieve the desired power is smaller than that
we expected to achieve with the study as originally proposed, then the
study size must be increased. In general the factor by which the study size
must be increased is

Current value of S \ 2
Required value of S

Exercise 21.5. Carrying on from the previous exercise, by what factor must
the study be increased to achieve the required power? How could this be done
in practice?

21.5 Application to other study designs

The extension of the above argument to different study designs introduces
no serious new problems, although the first stage of the process — calcu-
lating the expected study result — may be more difficult.
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COHORT STUDIES

When comparing exposed and unexposed groups in a cohort study, the
standard deviation of the estimate of log is

/1 1
S‘— D_O+D_1-

In order to predict the value of S, we need to be able to predict the values of
Dg and D,. This can be done by using the total person-time of observation
in the proposed cohort study, Y, and a guess for the disease rate in this
population, A. The total number of events we expect to observe is given by

D =Y.

If the proportion of the study cohort who will have been exposed is P,
the person-time observed in the exposed and unexposed groups will be
approximately PY and (1 — P)Y respectively. When the anticipated rate
ratio is 6, the odds that a case was exposed will be

PY P
0(1—P)Y N 01—P’

and it follows that the D cases we anticipate are expected to split between
exposed and unexposed as

6P 1-P
Dy=D—F—— =D—.
! 1-P+46P’ Do=Di=p14p
The expected value of S for the estimated log rate ratio can then be cal-
culated and the power calculated as before.

Exercise 21.6. You plan a cohort study of ischaemic heart disease in middle-
aged men. The proposed size of the cohort is 10000 men and a 5-year follow up
period is envisaged. The estimated incidence rate in the study population is 10
per thousand person-years. What is the power of the study to detect a rate ratio
of 1.5 for a risk factor to which 10% of the population is exposed?

CASE CONTROL STUDIES

Similar calculations are involved in the calculation of the power of a case
control study. If it is planned to study D cases and H controls, and if the
proportion of the population thought to be exposed to the factor of interest
is P, we would expect the D cases to split between exposed and unexposed
groups as above, and we expect the H controls to split as

H, = PH, Ho=(1- P)H.
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We are then in a position to calculate the expected standard deviation for
the log odds ratio estimate, by the usual formula:

N
1 1
S=4/—+—+ — + —.
\/D0+D1+H0+H1
The calculation of the power follows as before.

Exercise 21.7. What is the power of a study of 100 cases and 200 controls to
detect an odds ratio of 2.0 for an exposure present in 25% of the population?

STRATIFICATION AND MATCHING

Extension of these ideas to allow for stratification is straightforward in
principle. In practice the difficulty is that the standard deviation of the
effect of interest depends in a rather complicated way upon the strength of
relationship between the exposure of interest and the stratifying variable(s).
The same is true of matched case-control studies. It is particularly easy to
see the difficulty in the case of the 1:1 design, since only case-control pairs
which are discordant in exposure status contribute to the estimation of
exposure effect. In such cases it will often be necessary to carry out a small
pilot study, to provide estimates of the quantities necessary to calculate
power.

DOSE-RESPONSE RELATIONSHIPS

If the level of exposure is graded, the log-linear model described in Chap-
ter 20 allows an anticipated slope of a dose-response curve to be translated
into a predicted increase in mean exposure of cases. If the standard de-
viation of the level of exposure in the study group is known, sample size
calculations are then straightforward.

Solutions to the exercises

21.1 The anticipated number of deaths will be D = 6F and the corre-
sponding standard deviation for the estimate of log will be

1
D
For our four values of 4,
- 9 14 1.7 20 5.0
D 17.5 21.25 25.0 62.5
log(6) 0.336 0.531 0.693 1.609

S (estimated) 0.239 0.217 0.200 0.126
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21.2 The larger study would correspond tothe inner curve. For any size
of effect, this curve predicts a higher probability of obtaining a significant
result.

21.3 In each case, dS is obtained by subtracting 1.96S from the value of
log(#). Thus, d is obtained by dividing this difference by S:

0 d Power
14 (0.336 — 1.96 x 0.239)/0.239 = —0.55 0.29
1.7 (0.531 — 1.96 x 0.217)/0.217 = 0.49 0.69
2.0 (0.693 — 1.96 x 0.200)/0.200 = 1.51 0.93
50 (1.609 —1.96 x 0.126)/0.126 = 10.81 1.00
There is a slight chance of detecting a rate ratio of § = 1.4, quite a good

chance for 6 = 1.7, a very good chance at # = 2.0 and the probability of
failing to obtain a significant result at 6 = 5.0 is negligible.

21.4 The expected result at = 1.7 is b = 0.531. By reference to Ta-
ble 21.1 we see that ¢ = 1.960 and d = 1.282 so that we need the standard
deviation for the effect estimate to be:

0.531
= ——— =(.164.
1.960 + 1.282 0-164
21.5 The current standard deviation is 0.217 and it must be reduced to
0.164. The study must therefore be scaled up by a factor of

0.217\°
— | =1.75.
<0.164) 175
The study must be increased so as to yield 75% more deaths. This can

be achieved in practice either by increasing the size of the cohort or by
extending the follow-up period.

21.6 The proposed study would accumulate 5 X 10000 = 50000 person-
years of observations. At the anticipated incidence rate we would expect to
observe D = 10 x 50 = 500 disease events. If a proportion P = 0.1 of the
total person-time is of exposed subjects and (1 — P) = 0.9 is of unexposed
subjects, and if the rate ratio is § = 1.5, the expected number of exposed
and unexposed cases is

1.5 x 0.1
D, = X PR
1 00X G5 i =01
— 714
09
Do = 500x o T5x01
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= 4286

The expected standard deviation for log(#) is

/11 1
= ,/— —— =10.128
S 71.4 + 428.6

and b = log(1.5) = 0.405. Thus, the number of standard deviations between
expected result and null hypothesis, (¢ + d), is 0.405/0.128 = 3.164. For
a 5% significance level, ¢ = 1.960 so that d = 3.164 — 1.960 = 1.204.
The power is the probability of exceeding —1.204 in a standard Gaussian
distribution, given by tables as 0.885. The study has slightly less than 90%
power to detect a rate ratio of 1.5.

21.7 Since the exposure is present in 25% of the population, we would
expect the 200 controls to split as H; = 50 exposed, and Hy = 150 unex-
posed. For 8 = 2.0, the expected split of the 100 cases is

2.0 % 0.25

Di = 10X o 0% 0.25
= 40,
Dy = 60.

The expected standard deviation of the estimate of log(8) is

1 1 1 1

=4/ —+-—+—+ —=0.261
s \/50+150+4o+60

and b = log(2.0) = 0.693. The number of standard deviations between

expected result and null hypothesis is 2.65. If a 5% significance level is to

be used, d = 2.65 — 1.96 = 0.69. By referring —0.69 to the table of the

standard Gaussian distribution, the power is 0.755 — just over 75%.
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